1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lina2011 [118]
2 years ago
6

An object is placed in front of a convex lens of a length 10cm. What is the nature of the image formed if the object distance is

15 cm?​
Physics
1 answer:
Lady_Fox [76]2 years ago
3 0

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Focal\:length=10\:cm}

\:\:\:\:\bullet\:\:\:\sf{Object \ distance = -15\:cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Nature \: of \:the\:image}

\\

{\mathfrak{\underline{\purple{\:\:\: Solution:-\:\:\:}}}} \\ \\

<h3>☯ <u>By using formula of Lens</u> </h3>

\\

\dashrightarrow\:\: {\boxed{\sf{\dfrac{1}{u} + \dfrac{1}{v} = \dfrac{1}{f}}}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v}-\dfrac{1}{-15}=\dfrac{1}{10}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v}+\dfrac{1}{15}=\dfrac{1}{10}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v} = \dfrac{1}{10} - \dfrac{1}{15}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v} = \dfrac{1}{30}}

\\

\dashrightarrow\:\: \sf{ v = 30 \ cm}

\\

<h3>☯ <u>Now, Finding the magnification </u></h3>

\\

\dashrightarrow\:\: \sf{ m = \dfrac{-30}{-15}}

\\

\dashrightarrow\:\: \sf{m = -2}

\\

<h3>☯ <u>Hence</u>,\\</h3>

\:\:\:\:\star\:\:\:\sf{Image \ distance = 30 \ cm}

\:\:\:\:\star\:\:\:\sf{Nature = Real \ \& \ inverted}

You might be interested in
Laskar, J.: 1990, The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones, Icarus, 88, 266
balandron [24]

The chaotic nature of the Solar System excluding Pluto was established by the numerical computation of the maximum Lyapunov exponent of its secular system over 200 myr.

<h3>What is chaotic motion of the solar system ?</h3>

There has been an increase in awareness of chaotic dynamics in the solar system over the past 20 years. The orbits of tiny objects in the solar system, such as asteroids, comets, and interplanetary dust, are now known to be chaotic and to experience significant variations across geological time periods.

  • a completely unpredictable orbit, or one where significant changes in the orbit can result from even small changes in the position and/or velocity of the orbiting entity.

Learn more about Chaotic motion here:

brainly.com/question/13717859

#SPJ4

7 0
1 year ago
In a second experiment, you decide to connect a string which has length L from a pivot to the side of block A (which has width d
Salsk061 [2.6K]

Answer:

The answer is in the explanation

Explanation:

A)

i) The blocks will come to rest when all their initial kinetic energy is dissipated by the friction force acting on them. Since block A has higher initial kinetic energy, on account of having larger mass, therefore one can argue that block A will go farther befoe coming to rest.

ii) The force on friction acting on the blocks is proportional to their mass, since mass of block B is less than block A, the force of friction acting on block B is also less. Hence, one might argue that block B will go farther along the table before coming to rest.

B) The equation of motion for block A is

m_{A}\frac{\mathrm{d} v}{\mathrm{d} t} = -m_{A}g\nu_{s}\Rightarrow \frac{\mathrm{d} v}{\mathrm{d} t} = -\nu_{s}g \quad (1)

Here, \nu_{s} is the coefficient of friction between the block and the surface of the table. Equation (1) can be easily integrated to get

v(t) = C-\nu_{s}gt \quad (2)

Here, C is the constant of integration, which can be determined by using the initial condition

v(t=0) = v_{0}\Rightarrow C = v_{0} \quad (3)

Hence

v(t) = v_{0} - \nu_{s}gt \quad (4)

Block A will stop when its velocity will become zero,i.e

0 = v_{0}-\nu_{s}gT\Rightarrow T = \frac{v_{0}}{\nu_{s}g} \quad (5)

Going back to equation (4), we can write it as

\frac{\mathrm{d} x}{\mathrm{d} t} = v_{0}-\nu_{s}gt\Rightarrow x(t) = v_{0}t-\nu_{s}g\frac{t^{2}}{2}+D \quad (6)

Here, x(t) is the distance travelled by the block and D is again a constant of integration which can be determined by imposing the initial condition

x(t=0) = 0\Rightarrow D = 0 \quad (7)

The distance travelled by block A before stopping is

x(t=T) = v_{0}T-\nu_{s}g\frac{T^{2}}{2} = v_{0}\frac{v_{0}}{\nu_{s}g}-\nu_{s}g\frac{v_{0}^{2}}{2\nu_{s}^{2}g^{2}} = \frac{v_{0}^{2}}{2\nu_{s}g} \quad (8)

C) We can see that the expression for the distance travelled for block A is independent of its mass, therefore if we do the calculation for block B we will get the same result. Hence the reasoning for Student A and Student B are both correct, the effect of having larger initial energy due to larger mass is cancelled out by the effect of larger frictional force due to larger mass.

D)

i) The block A is moving in a circle of radius L+\frac{d}{2} , centered at the pivot, this is the distance of pivot from the center of mass of the block (assuming the block has uniform mass density). Because of circular motion there must be a centripetal force acting on the block in the radial direction, that must be provided by the tension in the string. Hence

T = \frac{m_{A}v^{2}}{L+\frac{d}{2}} \quad (9)

The speed of the block decreases with time due to friction, hence the speed of the block is maximum at the beginning of the motion, therfore the maximum tension is

T_{max} = \frac{m_{A}v_{0}^{2}}{L+\frac{d}{2}} \quad (10)

ii) The forces acting on the block are

a) Tension: Acting in the radially inwards direction, hence it is always perpendicular to the velocity of the block, therefore it does not change the speed of the block.

b) Friction: Acting tangentially, in the direction opposite to the velocity of the block at any given time, therefore it decreases the speed of the block.

The speed decreases linearly with time in the same manner as derived in part (C), using the expression for tension in part (D)(i) we can see that the tension in the string also decreases with time (in a quadratic manner to be specific).

8 0
3 years ago
g A 1.5-kg mass attached to spring with a force constant of 20.0 N/m oscillates on a horizontal, frictionless track. At t = 0, t
jok3333 [9.3K]

Answer:

(a)    f = 0.58Hz

(b)    vmax = 0.364m/s

(c)    amax = 1.32m/s^2

(d)    E = 0.1J

(e)    x(t)=0.1m*cos(2π(0.58s^{-1})t)

Explanation:

(a) The frequency of the oscillation, in a spring-mass system, is calculated by using the following formula:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}            (1)

k: spring constant = 20.0N/m

m: mass = 1.5kg

you replace the values of m and k for getting f:

f=\frac{1}{2\pi}\sqrt{\frac{20.0N/m}{1.5kg}}=0.58s^{-1}=0.58Hz

The frequency of the oscillation is 0.58Hz

(b) The maximum speed is given by the following relation:

v_{max}=\omega A=2\pi f A      (2)

A: amplitude of the oscillations = 10.0cm = 0.10m

v_{max}=2\pi (0.58s^{-1})(0.10m)=0.364\frac{m}{s}

The maximum speed of the mass is 0.364 m/s.

The maximum speed occurs when the mass passes trough the equilibrium point of the oscillation.

(c) The maximum acceleration is given by the following formula:

a_{max}=\omega^2A=(2\pi f)^2 A

a_{max}=(2\pi (0.58s^{-1}))(0.10m)=1.32\frac{m}{s^2}

The maximum acceleration is 1.32 m/s^2

The maximum acceleration occurs where the elastic force is a maximum, that is, where the mass is at the maximum distance from the equilibrium point, that is, the acceleration.

(d) The total energy of the system is calculated with the maximum potential elastic energy:

E=\frac{1}{2}kA^2=\frac{1}{2}(20.0N/m)(0.10m)^2=0.1J

The total energy is 0.1J

(e) The displacement as a function of time is:

x(t)=Acos(\omega t)=Acos(2\pi ft)\\\\x(t)=0.1m\ cos(2\pi(0.58s^{-1})t)

6 0
2 years ago
A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 4 ft/s along
babymother [125]

Answer:

Explanation:

height of pole = 15 ft

height of man = 6 ft

Let the length of shadow is y .

According to the diagram

Let at any time the distance of man is x.

The two triangles are similar

\frac{y-x}{y}=\frac{6}{15}

15 y - 15 x = 6 y

9 y = 15 x

y=\frac{5}{3}x

Differentiate with respect to time.

\frac{dy}{dt}=\frac{5}{3}\frac{dx}{dt}

As given, dx/dt = 4 ft/s

\frac{dy}{dt}=\frac{5}{3}\times 4

\frac{dy}{dt}=\frac{20}{3} ft/s

6 0
3 years ago
An object dropped on Planet P falls 144 m in 6 seconds. What is the gravitational acceleration of Planet P ? Gravitational accel
Tju [1.3M]

Answer:

The gravitational acceleration of the planet is, g = 8 m/s²

Explanation:

Given data,

The distance the object falls, s = 144 m

The time taken by the object is, t = 6 s

Using the III equations of motion

                  S = ut + ½ gt²

∴                 g = 2S/t²

Substituting the given values,

                   g = 2 x 144 /6²

                      = 8 m/s²

Hence, the gravitational acceleration of the planet is, g = 8 m/s²

7 0
3 years ago
Other questions:
  • Find the density of seawater at a depth where the pressure is 680 atm if the density at the surface is 1030 kg/m3. Seawater has
    11·1 answer
  • To a stationary observer, a man jogs east at 2.5 m/s and a woman jogs west at 1.5 m/s. from the woman's frame of reference, what
    9·2 answers
  • In a parallel portion of a series-parallel circuit, the voltage across the branches can be found by multiplying the sum of the b
    7·1 answer
  • Alice and Tom dive from an overhang into the lake below. Tom simply drops straight down from the edge, but Alice takes a running
    14·1 answer
  • If you found a galaxy with an Ha emission line that had a wavelength of 756.3 nm, what would be the galaxy’s distance if the Hub
    15·1 answer
  • Samantha is checking the weather for her upcoming trip to Mexico City. The weather forecast predicts a high-pressure system for
    12·2 answers
  • A frequently quoted rule of thumb in aircraft design is that wings should produce about 1000 N of lift per square meter of wing.
    12·1 answer
  • An infinite plane lies in the yz-plane and it has a uniform surface charge density.
    6·1 answer
  • A kind of variable that a researcher purposely changes in investigation is
    7·1 answer
  • Can I have an anime weirdo friend that's a girl pwease cuz guys are mean and don't understand. I'm a 16 yo guy​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!