1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
12

A 30 L electrical radiator containing heating oil is placed in a 50 m3room. Both the roomand the oil in the radiator are initial

ly at 10◦C. The radiator with a rating of 1.8 kW is nowturned on. At the same time, heat is lost from the room at an average rate of 0.35 kJ/s.After some time, the average temperature is measured to be 20◦C for the air in the room,and 50◦C for the oil in the radiator. Taking the density and the specific heat of the oil to be950 kg/m3and 2.2 kJ/kg◦C, respectively, determine how long the heater is kept on. Assumethe room is well sealed so that there are no air leaks.
Physics
1 answer:
Delicious77 [7]3 years ago
7 0

Answer:

Explanation:

Heat absorbed by oil

= mass x specific heat x rise in temperature

= 30 x 10⁻³ x 950 x 2.2 x 10³ x ( 50-10 )

= 25.08 x 10⁵ J  

Heat absorbed by air

= 50 x 1.2 x 1.0054 x 10³ x ( 20-10 )

= 6.03 x 10⁵ J

Total heat absorbed = 31.11 x 10⁵ J

If time required = t

heat lost from room

= .35 x 10³ t

Total heat generated in time t

= 1.8 x 10³ t

Heat generated = heat used

1.8 x 10³ t =  .35 x 10³ t  + 31.11 x 10⁵

1.45 x 10³ t = 31.11 x 10⁵

t = 31.11 x 10⁵ / 1.45 x 10³

t = 2145.5 s

You might be interested in
3. What is the force of sliding friction
ale4655 [162]

Answer:

the force of the friction is A-0.52

3 0
3 years ago
A 100 kg roller coaster comes over the first hill at 2 m/sec (vo). The height of the first hill (h) is 20 meters. See roller dia
aleksandr82 [10.1K]

For the 100 kg roller coaster that comes over the first hill of height 20 meters at 2 m/s, we have:

1) The total energy for the roller coaster at the <u>initial point</u> is 19820 J

2) The potential energy at <u>point A</u> is 19620 J

3) The kinetic energy at <u>point B</u> is 10010 J

4) The potential energy at <u>point C</u> is zero

5) The kinetic energy at <u>point C</u> is 19820 J

6) The velocity of the roller coaster at <u>point C</u> is 19.91 m/s

1) The total energy for the roller coaster at the <u>initial point</u> can be found as follows:

E_{t} = KE_{i} + PE_{i}

Where:

KE: is the kinetic energy = (1/2)mv₀²

m: is the mass of the roller coaster = 100 kg

v₀: is the initial velocity = 2 m/s

PE: is the potential energy = mgh

g: is the acceleration due to gravity = 9.81 m/s²

h: is the height = 20 m

The<em> total energy</em> is:

E_{t} = KE_{i} + PE_{i} = \frac{1}{2}mv_{0}^{2} + mgh = \frac{1}{2}*100 kg*(2 m/s)^{2} + 100 kg*9.81 m/s^{2}*20 m = 19820 J

Hence, the total energy for the roller coaster at the <u>initial point</u> is 19820 J.

   

2) The <em>potential energy</em> at point A is:

PE_{A} = mgh_{A} = 100 kg*9.81 m/s^{2}*20 m = 19620 J

Then, the potential energy at <u>point A</u> is 19620 J.

3) The <em>kinetic energy</em> at point B is the following:

KE_{A} + PE_{A} = KE_{B} + PE_{B}

KE_{B} = KE_{A} + PE_{A} - PE_{B}

Since

KE_{A} + PE_{A} = KE_{i} + PE_{i}

we have:

KE_{B} = KE_{i} + PE_{i} - PE_{B} =  19820 J - mgh_{B} = 19820 J - 100kg*9.81m/s^{2}*10 m = 10010 J

Hence, the kinetic energy at <u>point B</u> is 10010 J.

4) The <em>potential energy</em> at <u>point C</u> is zero because h = 0 meters.

PE_{C} = mgh = 100 kg*9.81 m/s^{2}*0 m = 0 J

5) The <em>kinetic energy</em> of the roller coaster at point C is:

KE_{i} + PE_{i} = KE_{C} + PE_{C}            

KE_{C} = KE_{i} + PE_{i} = 19820 J      

Therefore, the kinetic energy at <u>point C</u> is 19820 J.

6) The <em>velocity</em> of the roller coaster at point C is given by:

KE_{C} = \frac{1}{2}mv_{C}^{2}

v_{C} = \sqrt{\frac{2KE_{C}}{m}} = \sqrt{\frac{2*19820 J}{100 kg}} = 19.91 m/s

Hence, the velocity of the roller coaster at <u>point C</u> is 19.91 m/s.

Read more here:

brainly.com/question/21288807?referrer=searchResults

I hope it helps you!

3 0
3 years ago
Ask Your Teacher A basketball player shoots toward a basket 5.8 m away and 3.0 m above the floor. If the ball is released 1.7 m
const2013 [10]

Answer:

The answer to your question is    vo = 5.43 m/s

Explanation:

Data

distance = d= 5.8 m

height = 3 m

height 2 = 1.7 m

angle = 60°

vo = ?

g = 9.81 m/s²

Formula

              hmax = vo²sinФ/ 2g

Solve for vo²

              vo² = 2ghmax / sinФ

Substitution

              vo² = 2(9.81)(3 - 1.7) / 0.866

Simplification

              vo² = 19.62(1.3) / 0.866

              vo² = 25.51 / 0.866

              vo² = 29.45

Result

              vo = 5.43 m/s

               

5 0
4 years ago
The 10-kg uniform rod is pinned at end
Anton [14]
Supposing that the spring is un stretched when θ = 0, and has a toughness of k = 60 N/m.It seems that the spring has a roller support on the left end. This would make the spring force direction always to the left 
Sum moments about the pivot to zero. 
10.0(9.81)[(2sinθ)/2] + 50 - 60(2sinθ)[2cosθ] = 0 98.1sinθ + 50 - (120)2sinθcosθ = 0 98.1sinθ + 50 - (120)sin(2θ) = 0 
by iterative answer we discover that 
θ ≈ 0.465 radians 
θ ≈ 26.6º 
3 0
3 years ago
Explain what happens to light when it is refracted at the surface of water.
stepan [7]
Light will make the object appear “broken” or in an irregular shape.

Refraction is the change in direction of waves.
6 0
3 years ago
Read 2 more answers
Other questions:
  • 1. A base-ball of mass 0.3kg approaches the bat at a speed of 30 miles/hour and when the ball hits the bat for 0.5 s, it started
    10·1 answer
  • If you lose control of your vehicle and collide with a fixed object, such as a tree, at 60 m.p.h., the force of impact is the sa
    14·1 answer
  • The highest frequency radio waves are which type ?
    6·1 answer
  • A rocket is launched from rest and moves in a straight line at 30.0 degrees above the horizontal with an acceleration of 35.0 m/
    13·1 answer
  • 50 points for any help on these 3 physics problems!!!!
    5·1 answer
  • (show your work)
    10·1 answer
  • In a pneumatic lift, compressed air exerts a force on a piston with a radius of 10.00 cm. This pressure is transmitted to a seco
    12·1 answer
  • Problema de coeficiente de rozamiento
    14·1 answer
  • Suppose a 4,000-kg elephant is hoisted 20 m above Earth’s surface. Use a calculator and follow the steps below to find the eleph
    6·1 answer
  • ) The radius of sphere measured repeated values 5.63 m, 5.54 m and 5.53 m. Determine the most
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!