Answer:
78.4 KN/m
Explanation:
Given
mass of person 'm' =80 kg
car dips about i.e spring stretched 'x'= 1 cm => 0.01m
acceleration due to gravity 'g'= 9.8 m/s^2
as we know that,in order to find approximate spring constant we use Hooke's Law i.e F=kx
where,
F = the force needed
x= distance the spring is stretched or compressed beyond its natural length
k= constant of proportionality called the spring constant.
F=kx
---> (since f=mg)
mg=kx
k=(mg)/x
k=(80 x 9.8)/ 0.01
k=78.4x
k=78.4 KN/m
Answer:
41°
Explanation:
Kinetic energy at bottom = potential energy at top
½ mv² = mgh
½ v² = gh
h = v²/(2g)
h = (2.4 m/s)² / (2 × 9.8 m/s²)
h = 0.294 m
The pendulum rises to a height of above the bottom. To determine the angle, we need to use trigonometry (see attached diagram).
L − h = L cos θ
cos θ = (L − h) / L
cos θ = (1.2 − 0.294) / 1.2
θ = 41.0°
Rounded to two significant figures, the pendulum makes a maximum angle of 41° with the vertical.
Answer:
9.25 x 10^-4 Nm
Explanation:
number of turns, N = 8
major axis = 40 cm
semi major axis, a = 20 cm = 0.2 m
minor axis = 30 cm
semi minor axis, b = 15 cm = 0.15 m
current, i = 6.2 A
Magnetic field, B = 1.98 x 10^-4 T
Angle between the normal and the magnetic field is 90°.
Torque is given by
τ = N i A B SinФ
Where, A be the area of the coil.
Area of ellipse, A = π ab = 3.14 x 0.20 x 0.15 = 0.0942 m²
τ = 8 x 6.20 x 0.0942 x 1.98 x 10^-4 x Sin 90°
τ = 9.25 x 10^-4 Nm
thus, the torque is 9.25 x 10^-4 Nm.
Speed equals distance divided by time, so 350 divided by 2.5 equals 140 kilometers per hour.
Ideally the resistance should be ZERO