Answer:
Acceleration = 0.0282 m/s^2
Distance = 13.98 * 10^12 m
Explanation:
we will apply the energy theorem
work done = ΔK.E ( change in Kinetic energy ) ---- ( 1 )
<em>where :</em>
work done = p * t
= 15 * 10^6 watts * ( 1 year ) = 473040000 * 10^6 J
( note : convert 1 year to seconds )
and ΔK.E = 1/2 mVf^2 given ; m = 1200 kg and initial V = 0
<u>back to equation 1 </u>
473040000 * 10^6 = 1/2 mv^2
Vf^2 = 2(473040000 * 10^6 ) / 1200
∴ Vf = 887918.92 m/s
<u>i) Determine how fast the rocket is ( acceleration of the rocket )</u>
a = Vf / t
= 887918.92 / ( 1 year )
= 0.0282 m/s^2
<u>ii) determine distance travelled by rocket </u>
Vf^2 - Vi^2 = 2as
Vi = 0
hence ; Vf^2 = 2as
s ( distance ) = Vf^2 / ( 2a )
= ( 887918.92 )^2 / ( 2 * 0.0282 )
= 13.98 * 10^12 m
Answer:
a = 1.05m.s²
Explanation:
Fnet = m×a
Fapplied - friction = m×a
1172 - 962 = 200 × a
210 = 200a
a = 1.05
Answer:
6400 W (or) 6.4 KW
Explanation:
Formula we use,
→ P = I²R
Let's solve for the power of device,
→ P = I²R
→ P = (8)² × 100
→ P = 64 × 100
→ [ P = 6400 W ]
Hence, the power is 6400 W.
For a human jumper to reach a height of 110 cm, the person will need to leave the ground at a speed of 4.65 m/s.
We can calculate the initial speed to reach 110 cm of height with the following equation:

Where:
: is the final speed = 0 (at the maximum height of 110 cm)
: is the initial speed =?
g: is the acceleration due to gravity = 9.81 m/s²
h: is the height = 110 cm = 1.10 m
Hence, the <u>initial velocity</u> is:

Therefore, the initial speed that the person must have to reach 110 cm is 4.65 m/s.
You can see another example here: brainly.com/question/13359681?referrer=searchResults
I hope it helps you!
Answer:
The specific heat capacity can be defined as the amount of heat required to raise the temperature of 1 unit of mass by 1 unit temperature. The specific heat capacity of water is 4.186 joule/gram °C which is higher than common substances. The land has lower specific heat capacity. Thus, the land gets hot quickly than water.
This results in warming up air near the land which creates a difference in pressure across the coastal region. Sea breeze blows from sea towards landmass. Opposite happens at night, when water is still warm and land gets cooled down quickly. Then land breeze blows from landmass towards the sea. This breeze maintains a moderate temperature and windy and humid weather in the coastal regions.