You can write the equation in 3 different ways, depending on which quantity you want to be the dependent variable. Any one of the three forms can be derived from either of the other two with a simple algebra operation. They're all the same relationship, described by "Ohm's Law".
==> Current = (potential difference) / (resistance)
==> Potential difference = (current) x (resistance)
==> Resistance = (potential difference) / (resistance)
Answer:
750 people
Explanation:
From the question,
Number of people in the city = population density×Area of the city
N = D×A.......................... Equagtion 1
Where N = Number of people in the city, D = population density, A = Area of the city.
Given: D = 50 people per square kilometer, A = 1.5×10 square kilometer.
Substitute into equation 1
N = 50(1.5×10)
N = 750 people.
Hence the total number of people in the city is 750 people.
14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.
![Charge = Current \times Time](https://tex.z-dn.net/?f=Charge%20%3D%20Current%20%5Ctimes%20Time)
As two different current is passing at two different times, the net charge will be the different in current. So,
![\text { Charge }=(1.0000020-1.0000000) \times t=2 \times 10^{-6} \times t](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Charge%20%7D%3D%281.0000020-1.0000000%29%20%5Ctimes%20t%3D2%20%5Ctimes%2010%5E%7B-6%7D%20%5Ctimes%20t)
The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.
![V=\frac{k q}{R}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7Bk%20q%7D%7BR%7D)
Here
, q is the charge and R is the radius. As
and R =17 cm = 0.17 m, then the voltage will be
![V=\frac{9 \times 10^{9} \times 2 \times 10^{-6} \times t}{0.17}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B9%20%5Ctimes%2010%5E%7B9%7D%20%5Ctimes%202%20%5Ctimes%2010%5E%7B-6%7D%20%5Ctimes%20t%7D%7B0.17%7D)
The time is required to find to reach the voltage of 1500 V, so
![1500 =\frac{9 \times 10^{9} \times 2 \times 10^{-6} \times t}{0.17}](https://tex.z-dn.net/?f=1500%20%3D%5Cfrac%7B9%20%5Ctimes%2010%5E%7B9%7D%20%5Ctimes%202%20%5Ctimes%2010%5E%7B-6%7D%20%5Ctimes%20t%7D%7B0.17%7D)
![\begin{aligned}&t=\frac{1500 \times 0.17}{\left(9 \times 10^{9} \times 2 \times 10^{-6}\right)}\\&t=14.1666 \times 10^{-3} s=14\ \mathrm{ms}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26t%3D%5Cfrac%7B1500%20%5Ctimes%200.17%7D%7B%5Cleft%289%20%5Ctimes%2010%5E%7B9%7D%20%5Ctimes%202%20%5Ctimes%2010%5E%7B-6%7D%5Cright%29%7D%5C%5C%26t%3D14.1666%20%5Ctimes%2010%5E%7B-3%7D%20s%3D14%5C%20%5Cmathrm%7Bms%7D%5Cend%7Baligned%7D)
So, 14 ms is required to reach the potential of 1500 V.