Answer:
L = 5076.5 kg m² / s
Explanation:
The angular momentum of a particle is given by
L = r xp
L = r m v sin θ
the bold are vectors, where the angle is between the position vector and the velocity, in this case it is 90º therefore the sine is 1
as we have two bodies
L = 2 r m v
let's find the distance from the center of mass, let's place a reference frame on one of the masses
=
i
x_{cm} =
x_{cm} =
x_{cm} =
x_{cm} = 13.1 / 2 = 6.05 m
let's calculate
L = 2 6.05 74.3 5.65
L = 5076.5 kg m² / s
<em><u>The</u></em><em><u> </u></em><em><u>atomic</u></em><em><u> </u></em><em><u>nucleus</u></em><em><u> </u></em><em><u>consists</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>protons</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u>.</u></em>
<em><u>Additional</u></em><em><u> </u></em><em><u>information</u></em><em><u>:</u></em>
<em><u>Protons</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>positive</u></em><em><u>ly</u></em><em><u> </u></em><em><u>charged</u></em><em><u> </u></em><em><u>particl</u></em><em><u>e</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>negative</u></em><em><u>ly</u></em><em><u> </u></em><em><u>charged</u></em><em><u> </u></em><em><u>particle</u></em><em><u>.</u></em>
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>:</u></em><em><u>)</u></em>
Assume the motion when you are in the car or in the school bus to go to the school.
To describe the motion the first thing you need is a point of reference. Assume this is your house.
This should be a description:
- When you are sitting and the car has not started to move you are at rest.
- The car starts moving from rest, gaining speed, accelerating. You start to move away from your house, with a positive velocity (from you house to your school) and positive acceleration (velocity increases).
- The car reaches a limit speed of 40mph, and then moves at constant speed. The motion is uniform, the velocity is constant, positive, since you move in the same direction), and the acceleration is zero.
- When the car approaches the school, the driver starts to slow down. Then, you speed is lower but yet the velocity is positive, as you are going in the same direction. The acceleration is negative because it is in the opposite direction of the motion.
- When the car stops, you are again at rest: zero velocity and zero acceleration.
- In all the path your velocity was positive, constant at times (zero acceleration) and variable at others (accelerating or decelerating).
- When you comeback home, then you can start to compute negative velocities, as you will be decreasing the distance from your point of reference (your house).
Answer:
The weather will clear up and get sunnier.
Explanation:As weather forecasters monitor air pressure, falling barometer measurements can signal that bad weather is on the way. In general, if a low pressure system is on its way, be prepared for warmer weather with storms and rain. If a high pressure system is coming, you can expect clear skies and cooler temperatures.
hope this helped:)
Brainliest?
Answer:


Explanation:
1 full revolution is
let \theta be the angle of Ron's position.
At t = 0. 
one full revolution occurs in 12 sec, so his angle at t time is

r is radius of circle and it is given as


for r = 30 sec


however, that is centered at (0,0) and the positioned at time t = 0 is (30,0). it is need to shift so that the start position is (30,45). it can be done by adding to y

