1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
4 years ago
5

The potential difference between two points, A and B, in an electric field is 2.00 volts. The energy required to move a charge o

f 8x10^-19 coulomb from point A to point B is
Physics
1 answer:
Pavlova-9 [17]4 years ago
6 0

Answer:

W_A_B=-1.6\times 10^{-18} J

Explanation:

Let A and B be two points located in a uniform electric field, A being a distance d from B in the direction of the field. The work that an external force must do to bring a unit positive charge q from the reference point to the point considered against the electric force at constant speed, mathematically is expressed by:

V_B_A=\frac{W_A_B}{q}

Therefore, isolating W_A_B and replacing the data provided:

W_A_B=V_B_A *q=-2*(8\times 10^{-19}) =-1.6\times 10^{-18}J

You might be interested in
When non-metric units were used in the United Kingdom, a unit of mass called the pound-mass (lbm) was employed, where 1lbm=0.453
Drupady [299]

Answer:

a) 0.022%

b) 10014.32 lb

Explanation:

a) Percentage uncertainty would be

0.0001\times \frac{100}{0.4539}=0.022%

Percent uncertainty is 0.022%

b) For 1 kg uncertainty mass in kg would be

\frac{1}{0.022}\times {100}=4545.5\ kg

Mass in pounds would be

\frac{4545.5}{0.4539}=10014.32\ lb

Mass in pound-mass is 10014.32 lb

8 0
3 years ago
Salmon often jump waterfalls to reach their breeding grounds. Starting downstream, 3.18 m away from a waterfall 0.294 m in heigh
Karolina [17]

Answer:

v = 7.65 m/s

t = 0.5882 s

Explanation:

We are told that the salmon started downstream, 3.18 m away from a waterfall.

Thus, range = 3.18 m

Since the horizontal velocity component is constant, then;

Range = vcosθ × t

Thus,

vcosθ × t = 3.18 - - - (eq 1)

We are told the salmon reached a height of 0.294 m

Thus, using distance equation;

s = v_y•t + ½gt²

g will be negative since motion is against gravity.

s = v_y•t - ½gt²

Thus;

0.294 = v_y•t - ½gt²

v_y = vsinθ

Thus;

0.294 = vtsinθ - ½gt² - - - (eq 2)

From eq(1), making v the subject, we have;

v = 3.18/tcosθ

Plugging into eq 2,we have;

0.294 = (3.18/tcosθ)tsinθ - ½gt²

0.295 = 3.18tanθ - ½gt²

We are given g = 9.81 m/s² and θ = 45°

0.295 = (3.18 × tan 45) - ½(9.81) × t²

0.295 = 3.18 - 4.905t²

3.18 - 0.295 = 4.905t²

4.905t² = 2.885

t = √2.885/4.905

t = 0.5882 s

Thus;

v = 3.18/(0.5882 × cos45)

v = 7.65 m/s

8 0
3 years ago
How can you edit the light wave to increase the photosynthesis in the plant?
muminat

Answer: C) Increase the amplitude of the wavelenghth to increase the intensity.

Explanation:

7 0
2 years ago
What is the numeric value of a mole for atoms or molecules?
Talja [164]

Answer:

6.02×10²³

Explanation:

Mole measures the number of particles in a specific substance. The numeric value of a mole for atom or molecules is approximately 6.02×10²³ atoms or molecules.

5 0
3 years ago
A proton, starting from rest, accelerates through a potential difference of 1.0 kV and then moves into a magnetic field of 0.040
Minchanka [31]

Answer:

r = 0.11 m

Explanation:

The radius of the proton's resulting orbit can be calculated equaling the force centripetal (Fc) with the Lorentz force (F_{B}), as follows:

F_{c} = F_{B} \rightarrow \frac{m*v^{2}}{r} = qvB (1)

<u>Where:</u>

<em>m: is the proton's mass =  1.67*10⁻²⁷ kg</em>

<em>v: is the proton's velocity</em>

<em>r: is the radius of the proton's orbit</em>

<em>q: is the proton charge = 1.6*10⁻¹⁹ C</em>

<em>B: is the magnetic field = 0.040 T </em>

Solving equation (1) for r, we have:

r = \frac{mv}{qB}   (2)

By conservation of energy, we can find the velocity of the proton:

K = U \rightarrow \frac{1}{2}mv^{2} = q*\Delta V   (3)

<u>Where:</u>

<em>K: is kinetic energy</em>

<em>U: is electrostatic potential energy</em>

<em>ΔV: is the potential difference = 1.0 kV </em>

Solving equation (3) for v, we have:

v = \sqrt{\frac{2q\Dela V}{m}} = \sqrt{\frac{2*1.6 \cdot 10^{-19} C*1.0 \cdot 10^{3} V}{1.67 \cdot 10^{-27} kg}} = 4.38 \cdot 10^{5} m/s  

Now, by introducing v into equation (2), we can find the radius of the proton's resulting orbit:

r = \frac{mv}{qB} = \frac{1.67 \cdot 10^{-27} kg*4.38 \cdot 10^{5} m/s}{1.6 \cdot 10^{-19} C*0.040 T} = 0.11 m

Therefore, the radius of the proton's resulting orbit is 0.11 m.

I hope it helps you!  

5 0
3 years ago
Other questions:
  • Density is the ratio of an object’s mass to its volume. would you expect density to be a vector or a scalar quantity? explain.
    5·1 answer
  • Failure to accomplish Erikson’s psychosocial task of late adulthood leads to despair.
    7·2 answers
  • What is the length of a simple pendulum with a period of 11.5 s?
    10·1 answer
  • Particle a has twice the charge of nearby particle
    12·1 answer
  • Science Mixtures Question( giving brainly, thanks, and rank of 5 stars.)
    9·2 answers
  • Water enters a 2 m3 tank at a rate of 6 kg/s and is withdrawn at a rate of 2 kg/s. The tank is initially half full. What type of
    13·1 answer
  • The earth and moon are seperated by a
    12·1 answer
  • Which of the following types of stars is the coolest? In Graph A, the curve peaks at 800 nm, in the red section of the visible l
    5·2 answers
  • Agustin visits Panama City, Florida, during the month of May. He feels a shore breeze blowing from theocean onto the beach. What
    11·1 answer
  • A man is using a fishing rod to catch fish in figure 1.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!