Answer:
The value of acceleration that accomplishes this is 8.61 ft/s² .
Explanation:
Given;
maximum distance to be traveled by the car when the brake is applied, d = 450 ft
initial velocity of the car, u = 60 mph = (1.467 x 60) = 88.02 ft/s
final velocity of the car when it stops, v = 0
Apply the following kinematic equation to solve for the deceleration of the car.
v² = u² + 2as
0 = 88.02² + (2 x 450)a
-900a = 7747.5204
a = -7747.5204 / 900
a = -8.61 ft/s²
|a| = 8.61 ft/s²
Therefore, the value of acceleration that accomplishes this is 8.61 ft/s² .
Answer:
2.5 m/s
Explanation:
The speed of the animal is given by the ratio between the distance travelled by the animal and the time elapsed:

where d is the distance travelled and t the time elapsed. Note that this quantity is also equal to the slope of the curve.
In the time interval 0-20 s, we have
d = 50 m - 0 m = 50 m
t = 20 s - 0 s = 20 s
So, the speed is

Answer:
i think c
Explanation:
because cars run on mechanical energy and solar powered means its by the sun which is light energy
The players acceleration is 3.33 m/s/s
Acceleration= Velocity/Time
A =10/3
Answer:
bshghhxhgdyxhsygfhtgedhrugrugdjifgu
rolling of a ball uses motion his bushy we I his own shaken his known fish of his jus on