Answer:
Explanation:
Area A of the coil = .1 x .1 = .01 m²
no of turns n = 5
magnetic field B = .5 t²
Flux Φ perpendicular to plane passing through it.= nBA sin30
rate of change of flux
dΦ/dt = nAdBsin30 / dt
= nA d/dt (.5t²x .5 )
= nA x 2 x .25 x t
At t = 4s
dΦ/dt = nA x 2
= 5x .01 x 2
= .1
current = induced emf / resistance
= .1 / 4
= .025 A
= 25 mA.
answer
v = 4.2
set up an equation
we can use the formula for kinetic energy since we know mass and kinetic energy
K = 
v = 
values
K = 0.013 J
m = 1.5g = 0.0015 kg
plug in values
v = 
v = 4.2
Answer:
12552 J or 3000 calories
Explanation:
Q = m × c × ∆T
Where;
Q = amount of heat energy (J)
m = mass of water (g)
c = specific heat capacity (4.184 J/g°C)
∆T = change in temperature
For 50mL of water, there are 50g, hence, m = 50g, c = 4.184 J/g°C, initial temperature = 0°C, final temperature = 60°C.
Q = m × c × ∆T
Q = 50 × 4.184 × (60 - 0)
Q = 209.2 × 60
Q = 12552 J
Hence, the amount of heat energy used to heat the water is 12552 J or 3000 calories
v1 = 6m/s
v2 = 0
∆v = v1 - v2 = 6m\s
s = t * v = 15m
t = s\v1 = 15(m) \ 6(m\s) = 2.5s
a = ∆v\t = 6(m\s) \ 2.5s = 2.4m\s2
a = F\m = 2.4m\s2
F = a * m = 2.4m\s2 * ?kg
I can't tell you this because I don't know the mass of this cyclist