According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
Answer:
80 meters high
Explanation:
The velocity of the balloon would be g*t (I won't calculate, but will us this later)
We know that the kinetic energy at the bottom equals the potential at the top.
KE = PE
1/2 * m * v^2 = m * g * h
1/2 * m * (g * t)^2 = m * g * h (substitution)
1/2 * m * g^2 * t^2 = m * g * h
1/2 * g * t^2 = h (simplification by dividing the commons between both sides)
h = 1/2 * 9.81 * 4^2
h = 78.48 m (roughly 80 m)
Answer:
A VECTOR A IS DIRECTED ALONG THE NORTH DIRECTION ANOTHER VECTOR B IS DIRECTED IN THE SOUTH-EAST DIRECTION .THE RESULTANT CANNOT BE IN THE SAME DIRECTION