First square to the right
Answer: This is a typical acid/base equilibrium problem, that involves the use of logarithms.
Explanation:We assume that both nitric acid and hydrochloric acid dissociate to give stoichiometric
H
3
O
+
.
Moles of nitric acid:
26.0
×
10
−
3
⋅
L
×
8.00
⋅
m
o
l
⋅
L
−
1
=
0.208
⋅
m
o
l
H
N
O
3
(
a
q
)
.
And, moles of hydrochloric acid:
88.0
×
10
−
3
⋅
L
×
5.00
⋅
m
o
l
⋅
L
−
1
=
0.440
⋅
m
o
l
H
C
l
(
a
q
)
.
This molar quantity is diluted to
1.00
L
. Concentration in moles/Litre =
(
0.208
+
0.440
)
⋅
m
o
l
1
L
=
0.648
⋅
m
o
l
⋅
L
−
1
.
Now we know that water undergoes autoprotolysis:
H
2
O
(
l
)
⇌
H
+
+
O
H
−
. This is another equilibrium reaction, and the ion product
[
H
+
]
[
O
H
−
]
=
K
w
. This constant,
K
w
=
10
−
14
at
298
K
.
So
[
H
+
]
=
0.648
⋅
m
o
l
⋅
L
−
1
;
[
O
H
−
]
=
K
w
[
H
+
]
=
10
−
14
0.648
=
?
?
p
H
=
−
log
10
[
H
+
]
=
−
log
10
(
0.648
)
=
?
?
Alternatively, we know further that
p
H
+
p
O
H
=
14
. Once you have
p
H
,
p
O
H
is easy to find. Take the antilogarithm of this to get
[
O
H
−
]
.
Answer link
Answer:
.
Explanation:
Magnesium chloride and silver nitrate reacts at a
ratio:
.
In reality, the nitrate ion from silver nitrate did not take part in this reaction at all. Consider the ionic equation for this very reaction:
.
The precipitate silver chloride
is insoluble in water and barely ionizes. Hence,
isn't rewritten as ions.
Net ionic equation:
.
Calculate the initial quantity of nitrate ions in the mixture.
.
Since nitrate ions
do not take part in any reaction in this mixture, the quantity of this ion would stay the same.
.
However, the volume of the new solution is twice that of the original nitrate solution. Hence, the concentration of nitrate ions in the new solution would be
of the concentration in the original solution.
.
Answer:
so 0.15 moles X 22.4 dm3/mole=3.36 dm3. Next we find the moles of hexane combusted, and then the moles of CO2. Finally, we find the volume of CO2 using the fact that at STP, 1 mole of gas = 22.4 dm3.