Answer:
Particles can be classified as hadrons – baryons and mesons – and leptons, each with its anti-particle, and they should know that interactions between these particles can be described in terms of transfer of other particles known as vector bosons.
Explanation:
Your Welcome, if you could give me Brainlist I would appreciate it!
Answer: ∆L = 0.49cm ≈ 0.50cm
Therefore there should be 0.5 cm gap between each piece of steel.
Explanation:
Thermal expansion of steel is the increase in size of steel as a result of increased temperature. It can be represented by the mathematical expression:
∆L = L(k)∆T .....1
Where;
∆L is the change in length
L is the initial length
∆T is the change in temperature
k is the specific Linear expansion coefficient.
Given;
L = 12m
∆T = 50°C - 16°C = 34°C
k (for steel) = 1.2 × 10^-6 /C
Substituting the values into the equation 1
∆L = 12 × 34 × 12×10^-6
∆L = 4896 × 10^-6 m
∆L = 0.49cm ≈ 0.50cm
Therefore there should be 0.5 cm gap between each piece of steel.
We are given with the data that the angle of velocity is above the negative axis. hence, the angle lies in the second quadrant with negative x axis and positive y axis. In this case, the x component is -12 cos 60 equal to -6 m/s while the y-component is 12 sin 60 equal to 6 sqrt of 3 m/s.
<span>Total KE = KE (rotational) + KE (translational)
Moment of inertia of sphere is I = (2/5)mr^2
So KE (rotational) = (1/2) x I x w^2 = (1/2) x (2/5)mr^2 x w^2 = (1/5) x m x r^2 x w^2
KE (translational) = (1/2) x m x v^2 = (1/2) x m x (rw)^2 = (1/2) x m x r^2 x w^2
Hence KE = (1/5) x m x r^2 x w^2 + (1/2) x m x r^2 x w^2 = m x r^2 x w^2 ((1/5) + (1/2))
KE = (7/10) m x r^2 x w^2
Calculating the fraction of rotational kinetic energy to total kinetic energy,
= rotational kinetic energy / total kinetic energy
= (1/5) x m x r^2 x w^2 / (7/10) m x r^2 x w^2 = (1/5) / (7/10) = 2 / 7
The answer is 2 / 7</span>