Answer:
from the position of the center of the Sun
Explanation:
As we know that mass of Sun and Jupiter is given as


distance between Sun and Jupiter is given as

now let the position of Sun is origin and position of Jupiter is given at the position same as the distance between them
so we will have


from the position of the center of the Sun
<span>In the physics lab, a cube slides down a frictionless incline as shown in the figure below, check the image for the complete solution:
</span>
Answer:
C
Explanation:
they both have to be the same for both to not move
Answer:
0.5kg
Explanation:
Given parameters:
Potential energy = 147J
Height = 30m
Unknown:
Mass of the bird = ?
Solution:
Potential energy is the energy due to the position of a body. Now, the expression for finding the potential energy is given as;
P.E = mgH
m is the mass
g is the acceleration due to gravity = 9.8m/s²
H is the height
147 = m x 9.8 x 30
m = 0.5kg