The formula for weight is always weight=mass X gravitational field strength.
We already know the mass is 75kg.
The gravitational field strength on the moon is 1.6N. To find out the weight, we can substitute these values in to the formula.
Weight=75 X 1.6
Weight= 120N
Weight is measured on Neutons as it is a force.
Answer:
a. 120 W
b. 28.8 N
Explanation:
To a good approximate, the only external force that does work on a cyclist moving on level ground is the force of air resistance. Suppose a cyclist is traveling at 15 km/h on level ground. Assume he is using 480 W of metabolic power.
a. Estimate the amount of power he uses for forward motion.
b. How much force must he exert to overcome the force of air resistance?
(a)
He is 25% efficient, therefore the cyclist will be expending 25% of his power to drive the bicycle forward
Power = efficiency X metabolic power
= 0.25 X 480
= 120 W
(b)
power if force times the velocity
P = Fv
convert 15 km/h to m/s
v = 15 kmph = 4.166 m/s
F = P/v
= 120/4.166
= 28.8 N
definition of terms
power is the rate at which work is done
force is that which changes a body's state of rest or uniform motion in a straight line
velocity is the change in displacement per unit time.
The net force is 0 N.
To find the total net force, all you need to do is add the forces.
So 100 + -100 = 0
Most of these questions are trick questions, but if you know Newton's laws of forces, then you should know that all forces should cancel out with each other.
Hope this helps!!!
Answer:
The GPE, stored is 640 Joules
Explanation:
The given parameters are;
The given mass of the astronaut, m = 80 kg
The height of the top of the lunar lander to which the astronaut climbs, h = 5 m
The gravity strength on the moon, g = 1.6 N/kg
The Gravitational Potential Energy, GPE, stored is given according to the following equation;
GPE stored = m·g·h
Therefore, by substituting the known values, we have;
GPE Stored = 80 kg × 1.6 N/kg × 5 m = 640 Joules
The GPE, stored = 640 Joules.