1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
n200080 [17]
3 years ago
12

A ball is projected into the air with 100 j of kinetic energy which is transformed to gravitational potential energy at the top

of its trajectory. when it returns to its original level after encountering air resistance, its kinetic energy is
Physics
1 answer:
raketka [301]3 years ago
3 0
<span>when it returns to its original level after encountering air resistance, its kinetic energy is decreased. 
In fact, part of the energy has been dissipated due to the air resistance.

The mechanical energy of the ball as it starts the motion is:
</span>E=K = 100 J
<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>
You might be interested in
Two thin concentric spherical shells of radii r1 and r2 (r1 &lt; r2) contain uniform surface charge densities V1 and V2, respect
Lyrx [107]

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.

So,

a)  0 < r < r1 :

We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.

Hence, E = 0 for r < r1

b)  r1 < r < r2:

Electric field =?

Let, us consider the Gaussian Surface,

E x 4 \pi r^{2}  = \frac{Q1}{E_{0} }

So,

Rearranging the above equation to get Electric field, we will get:

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   }

Multiply and divide by r1^{2}

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } x \frac{r1^{2} }{r1^{2} }

Rearranging the above equation, we will get Electric Field for r1 < r < r2:

E= (σ1 x r1^{2}) /(E_{0} x r^{2})

c) r > r2 :

Electric Field = ?

E x 4 \pi r^{2}  = \frac{Q1 + Q2}{E_{0} }

Rearranging the above equation for E:

E = \frac{Q1+Q2}{E_{0} . 4 \pi. r^{2}   }

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } + \frac{Q2}{E_{0} . 4 \pi. r^{2}   }

As we know from above, that:

\frac{Q1}{E_{0} . 4 \pi. r^{2}   } =  (σ1 x r1^{2}) /(E_{0} x r^{2})

Then, Similarly,

\frac{Q2}{E_{0} . 4 \pi. r^{2}   } = (σ2 x r2^{2}) /(E_{0} x r^{2})

So,

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } + \frac{Q2}{E_{0} . 4 \pi. r^{2}   }

Replacing the above equations to get E:

E = (σ1 x r1^{2}) /(E_{0} x r^{2}) + (σ2 x r2^{2}) /(E_{0} x r^{2})

Now, for

d) Under what conditions,  E = 0, for r > r2?

For r > r2, E =0 if

σ1 x r1^{2} = - σ2 x r2^{2}

4 0
3 years ago
How does a mathematical model help you understand the science concepts
Dmitrij [34]
It can help with measurements and when you want to add measurements to a cylinder or a beaker so ya
7 0
3 years ago
1. Why didn't Sucheng Chan go to school until she was eight
Crazy boy [7]

Answer:

Because china was in war, and her parents didn't have enough money for to go to school.

3 0
3 years ago
PLEASE HELP! Daniel is 50.0 meters away from a building. He observes that his line-of-sight to the tip of the building makes an
zavuch27 [327]

Answer:

The height of building should be 98.13 m plus the height of Daniel. Since the 63° was measured from his eye level.

Explanation:

5 0
3 years ago
Which sentence in the passage can be used to conclude that Eris is a dwarf planet and not a planet?
Lelu [443]
Eris is slightly more massive than Pluto. However, both of them are smaller than Earth's Moon.
This should conclude that Eris is a dwarf planet.
3 0
3 years ago
Read 2 more answers
Other questions:
  • A heavy flywheel rotating on its central axis is slowing down because of friction in its bearings. At the end of the first minut
    15·1 answer
  • How can you produce more power than an excavator?
    14·2 answers
  • A teacher explains that a scientist named Boyle did many experiments to determine what the relationship is between the volume an
    11·1 answer
  • Write about a possible scenario where you may be tempted to not use lab safety explain what the correct and most safe choice wou
    5·1 answer
  • A worker pushes horizontally on a large crate with force of 298 N and the crate is moved 4.3 m. How much work was done?
    13·1 answer
  • The small intestine _____.
    6·2 answers
  • If the distance between two masses is tripled, the gravitational force between changes by a factor of:_______
    12·1 answer
  • A block of mass M is placed on an inclined surface. The incline makes an angle theta with respect to the horizontal. What are th
    7·1 answer
  • Two objects were lifted by a machine. One object had a mass of 5000 kg, and was lifted at a speed of 2 m/sec. The other had a ma
    11·1 answer
  • What are 2 phenomenon that are caused by gravity
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!