1) Carbon dioxide is a gas, so when
is evolved in the reaction, it appears as bubbles. The gas released extinguishes the fire and it can turn lime water milky.

2) When
is released in a decomposition reaction we can identify by the strong pungent smell of the gas released.
3) Saturated citric acid can cause corrosion of the metal layers present in the pipes. So, before draining out any acid it is neutralized so that the pipes and other plumbing works do not get damaged leading to leaks in the drainage system.
Answer:- 0.273 kg
Solution:- A double replacement reaction takes place. The balanced equation is:

We have 0.29 L of 22% m/v aluminum nitrate solution. m/s stands for mass by volume. 22% m/v aluminium nitrate solution means 22 g of it are present in 100 mL solution. With this information, we can calculate the grams of aluminum nitrate present in 0.29 L.

= 63.8 g aluminum nitrate
From balanced equation, there is 1:3 mol ratio between aluminum nitrate and sodium chlorate. We will convert grams of aluminum nitrate to moles and then on multiplying it by mol ratio we get the moles of sodium chlorate that could further be converted to grams.
We need molar masses for the calculations, Molar mass of sodium chlorate is 106.44 gram per mole and molar mass of aluminum nitrate is 212.99 gram per mole.

= 
sodium chlorate solution is 35% m/m. This means 35 g of sodium chlorate are present in 100 g solution. From here, we can calculate the mass of the solution that will contain 95.7 g of sodium chlorate and then the grams are converted to kg.

= 0.273 kg
So, 0.273 kg of 35% m/m sodium chlorate solution are required.
Given what we know, the ability of water to absorb more heat than the other substances mentioned is a reflection of its high boiling point.
<h3>What do we mean by boiling point?</h3>
This is the temperature at which the substance boils, and subsequently evaporates. Having a higher boiling point means that the substance will be able to absorb much more heat than that of a substance with a lower boiling point.
Therefore, Water molecules have a higher boiling point than molecules of similar size, such as ammonia and methane, reflecting its capacity to absorb large amounts of heat.
To learn more about water molecules visit:
brainly.com/question/11405437?referrer=searchResults
Answer:
2N2 + O2 ⇒ 2N2O
Explanation:
Since I cannot see the product's of the second chemical equation I will only solve the first one.
In order to balance a chemical equation you need to make sure that the atoms on both sides are equal.
In this case we have...
N2 + O2 = N2O
N = 2
O = 2
N = 2
O = 2
Change the coefficient:
N2O = 2N20
2 × 2 = 4
1 × 2 = 2
2N2 + O2 ⇒ 2N2O
Hope this helps.
Answer: Option (b) is the correct answer.
Explanation:
In a chemical reaction, the bonds between the reactant molecules tend to break leading to the formation of new bonds to produce products.
So, in order to break the bonds between the reactant molecules, energy is required to overcome the attraction between the atoms.
To form new bonds, energy gets released when two atoms come closer to each other. Hence, formation of bond releases energy.
As in the given reaction it is shown that
< 0, that is, enthalpy change is negative. Hence, energy is released as it is an exothermic process.
Thus, we can conclude that the statement energy released as the bonds in the reactants is broken is greater than the energy absorbed as the bonds in the products are formed, is true about the bond energies in this reaction.