An exothermic process is one that gives off heat.
Explanation:
This heat is transferred to the surroundings. An endothermic process is one in which heat has to be supplied to the system from the surroundings.
The balanced equation for
Ca(OH)2 + H3PO4→ Ca3(PO4)2 + H2O is
3 Ca(OH)2 +2 H3PO4→ Ca3(Po4)2 + 6 H2O
3 moles of Ca(OH)2 reacted with 2 moles of H3PO4 to form 1 mole of Ca3(PO4)2 and 6 moles of H2O
Answer:
a) Limiting: sulfur. Excess: aluminium.
b) 1.56g Al₂S₃.
c) 0.72g Al
Explanation:
Hello,
In this case, the initial mass of both aluminium and sulfur are missing, therefore, one could assume they are 1.00 g for each one. Thus, by considering the undergoing chemical reaction turns out:

a) Thus, considering the assumed mass (which could be changed based on the one you are given), the limiting reagent is identified as shown below:

Thereby, since there 1.00g of aluminium will consume 0.0554 mol of sulfur but there are just 0.0156 mol available, the limiting reagent is sulfur and the excess reagent is aluminium.
b) By stoichiometry, the produced grams of aluminium sulfide are:

c) The leftover is computed as follows:

NOTE: Remember I assumed the quantities, they could change based on those you are given, so the results might be different, but the procedure is quite the same.
Best regards.
Answer: 1:4.69
Explanation:
The ratio can be expressed as:
Ua/Ub= √(Mb/Ma)
Where Ua/Ub is the ratio of velocity of hydrogen to carbon dioxide and Ma is the molecular mass of hydrogen gas= 2
Mb is the molecular mass of CO2 = 44
Therefore
Ua/Ub= √(44/2)
Ua/Ub = 4.69
Therefore the ratio of velocity of hydrogen gas to carbon dioxide = 1:4.69
which implies hydogen is about 4.69 times faster than carbon dioxide.
Answer:
he major types of connective tissue are connective tissue proper, supportive tissue, and fluid tissue. Loose connective tissue proper includes adipose tissue, areolar tissue, and reticular tissue.
Explanation: