Answer:
Change in entropy S = 0.061
Second law of thermodynamics is satisfied since there is an increase in entropy
Explanation:
Heat Q = 300 kW
T2 = 24°C = 297 K
T1 = 7°C = 280 K
Change in entropy =
S = Q(1/T1 - 1/T2)
= 300(1/280 - 1/297) = 0.061
There is a positive increase in entropy so the second law is satisfied.
Answer:
A force must s applied to a wall or roof rafters to add strength and keep the building straight and plumb
Answer:
(a) dynamic viscosity = 
(b) kinematic viscosity = 
Explanation:
We have given temperature T = 288.15 K
Density 
According to Sutherland's Formula dynamic viscosity is given by
, here
μ = dynamic viscosity in (Pa·s) at input temperature T,
= reference viscosity in(Pa·s) at reference temperature T0,
T = input temperature in kelvin,
= reference temperature in kelvin,
C = Sutherland's constant for the gaseous material in question here C =120

= 291.15
when T = 288.15 K
For kinematic viscosity :


Answer:
a) Internal energy
Explanation:
As we know that internal energy is a point function so it did not depends on the path ,it depends at the initial and final states of process.All point function property did not depends on the path.Internal energy is a exact function.
Work and heat is a path function so these depend on the path.They have different values for different path between two states.Work and heat are in exact function.
We know that in ir-reversible process entropy will increase so entropy will be different for reversible and ir-reversible processes.
The odometer keeps running after you move beyond its upper limit, but the largest place values cannot be displayed due to overflow error.