Answer:
The answer is "Option A".
Explanation:
Series:
![9, 94, 916, 964, 9256, ........](https://tex.z-dn.net/?f=9%2C%2094%2C%20916%2C%20964%2C%209256%2C%20........)
Solving the above series:
![\to 9\\ \to 9(4) =94\\\to 9 (4^2) = 9(16) =916\\\to 9 (4^3) = 9(64) =964\\\to 9 (4^4) = 9(256) =9256\\\to 9 (4^5) = 9(1024) =91024\\\to 9 (4^6) = 9(4096) =94096\\](https://tex.z-dn.net/?f=%5Cto%20%209%5C%5C%20%5Cto%20%209%284%29%20%3D94%5C%5C%5Cto%209%20%284%5E2%29%20%3D%209%2816%29%20%3D916%5C%5C%5Cto%209%20%284%5E3%29%20%3D%209%2864%29%20%3D964%5C%5C%5Cto%209%20%284%5E4%29%20%3D%209%28256%29%20%3D9256%5C%5C%5Cto%209%20%284%5E5%29%20%3D%209%281024%29%20%3D91024%5C%5C%5Cto%209%20%284%5E6%29%20%3D%209%284096%29%20%3D94096%5C%5C)
So, the series is: ![9, 94, 916, 964, 9256, 91024, 94096, .................](https://tex.z-dn.net/?f=9%2C%2094%2C%20916%2C%20964%2C%209256%2C%2091024%2C%2094096%2C%20.................)
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:
![y' = -\frac{1}{x^{2}}\cdot \sin 2x + \frac{2}{x}\cdot \cos 2x](https://tex.z-dn.net/?f=y%27%20%3D%20-%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%7D%5Ccdot%20%5Csin%202x%20%2B%20%5Cfrac%7B2%7D%7Bx%7D%5Ccdot%20%5Ccos%202x)
![y' = \frac{2\cdot x \cdot \cos 2x - \sin 2x}{x^{2}}](https://tex.z-dn.net/?f=y%27%20%3D%20%5Cfrac%7B2%5Ccdot%20x%20%5Ccdot%20%5Ccos%202x%20-%20%5Csin%202x%7D%7Bx%5E%7B2%7D%7D)
![dy = \left(\frac{2\cdot x \cdot \cos 2x - \sin 2x}{x^{2}} \right)\cdot dx](https://tex.z-dn.net/?f=dy%20%3D%20%5Cleft%28%5Cfrac%7B2%5Ccdot%20x%20%5Ccdot%20%5Ccos%202x%20-%20%5Csin%202x%7D%7Bx%5E%7B2%7D%7D%20%5Cright%29%5Ccdot%20dx)
![dy = \left(\frac{2\pi \cdot \cos 2\pi -\sin 2\pi}{\pi^{2}} \right)\cdot (0.25)](https://tex.z-dn.net/?f=dy%20%3D%20%5Cleft%28%5Cfrac%7B2%5Cpi%20%5Ccdot%20%5Ccos%202%5Cpi%20-%5Csin%202%5Cpi%7D%7B%5Cpi%5E%7B2%7D%7D%20%5Cright%29%5Ccdot%20%280.25%29)
![dy = \frac{1}{2\pi}](https://tex.z-dn.net/?f=dy%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%7D)
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Answer:
It should be in Park or Neutral.
Explanation:
4) Ohms law thats the answer