Answer:
0.31 μm
Explanation:
this question wants us to Determine the depletion region width, xn, in the n-side in unit of μm. using the information below.
density in the p-side = 5.68x10^16
density in the n-side = 1.42x10^16

= √(1.42x10⁵)(1.76056335x10⁻¹⁷ + 7.042253521x10⁻¹⁷)(1.2)
= √150.74x10⁻¹¹
= 3.882x10⁻⁵
approximately 0.39μm
xn = 0.39 x 0.8
= 0.31μm
0.31 um is the depletion region width. thank you!
Question
Determine the average water exit velocity
Answer:
53.05 m/s
Explanation:
Given information
Volume flow rate, 
Diameter d= 8cm= 0.08 m
Assumptions
- The flow is jet flow hence momentum-flux correction factor is unity
- Gravitational force is not considered
- The flow is steady, frictionless and incompressible
- Water is discharged to the atmosphere hence pressure is ignored
We know that Q=AV and making v the subject then
where V is the exit velocity and A is area
Area,
where d is the diameter
By substitution

To convert v to m/s from m/s, we simply divide it by 60 hence

The power that must be supplied to the motor is 136 hp
<u>Explanation:</u>
Given-
weight of the elevator, m = 1000 lb
Force on the table, F = 500 lb
Distance, s = 27 ft
Efficiency, ε = 0.65
Power = ?
According to the equation of motion:
F = ma

a = 16.1 ft/s²
We know,

To calculate the output power:
Pout = F. v
Pout = 3 (500) * 29.48
Pout = 44220 lb.ft/s
As efficiency is given and output power is known, we can calculate the input power.
ε = Pout / Pin
0.65 = 44220 / Pin
Pin = 68030.8 lb.ft/s
Pin = 68030.8 / 500 hp
= 136 hp
Therefore, the power that must be supplied to the motor is 136 hp
Answer:
C: Viscosity, the resistance to flow that fluids exhibit
Explanation:
Did it on Edge :)