Answer:
The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region
Explanation:
The shear modulus (G) is the ratio of shear stress to shear strain. Like the modulus of elasticity, the shear modulus is governed by Hooke’s Law: the relationship between shear stress and shear strain is proportional up to the proportional limit of the material. The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region.
Answer:
The shear strain is 0.05797 rad.
Explanation:
Shear strain is the ratio of change in dimension along the shearing load direction to the height of the plate under application of shear load. Width of the plate remains same. Length of the plate slides under shear load.
Step1
Given:
Height of the pad is 1.38 in.
Deformation at the top of the pad is 0.08 in.
Calculation:
Step2
Shear strain is calculated as follows:



For small angle of
,
can take as
.

Thus, the shear strain is 0.05797 rad.
Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.