1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andre [41]
3 years ago
9

your friend's parents are worried about going over their budget for th month. Which expense would you suggest is NOT a need?

Engineering
1 answer:
prisoha [69]3 years ago
3 0

Things for entertainment aren't needs. For example, designer clothes, the new iPhone that just came out, fancy dining, that expensive shirt that has the same model somewhere cheaper, and sports cars are all wants, not needs.

Needs are like water, a shelter to live in, food, clothing, and running electricity. Water is essential for survival, since you could die of thirst in 2 days. A shelter will protect you from insects, weather, and uninvited guests. Living without food will kill you in 2 weeks, as you need food for energy and so let your body repair itself faster if you got injured. You need clothing to keep you warm and to cover your private parts. Running electricity is needed because electricity makes most of your needs easier to acquire.

I hope this helps! Good luck!

You might be interested in
Design a half-wave recti er which provides a peak voltage of 15 V, and anaverage voltage of 3.8 V when driven by a 120 V (rms) a
nirvana33 [79]

Answer:

You need a 120V to 24V commercial transformer  (transformer 1:5), a 100 ohms resistance, a 1.5 K ohms resistance and a diode with a minimum forward current of 20 mA (could be 1N4148)

Step by step design:

  1. Because you have a 120V AC voltage supply you need an efficient way to reduce that voltage as much as possible before passing to the rectifier, for that I recommend a standard 120V to 24V transformer.  120 Vrms = 85 V and 24 Vrms = 17V = Vin
  2. Because 17V is not 15V you still need a voltage divider to step down that voltage, for that we use R1 = 100Ω and R2 = 1.3KΩ. You need to remember that more than 1 V is going to be in the diode, so for our calculation we need to consider it. Vf = (V*R2)/(R1+R2), V = Vin - 1 = 17-1 = 16V and Vf = 15, Choosing a fix resistance R1 = 100Ω and solving the equation we find R2 = 1.5KΩ
  3. Finally to select the diode you need to calculate two times the maximum current and that would be the forward current (If) of your diode. Imax = Vf/R2 = 10mA and If = 2*Imax = 20mA

Our circuit meet the average voltage (Va) specification:

Va = (15)/(pi) = 4.77V considering the diode voltage or 3.77V without considering it

6 0
3 years ago
A material point in equilibrium has 1 independent component of shear stress in the xz plane. a)True b)- False
ozzi

Answer:

True

Explanation:

For point in xz plane the stress tensor is given by\left[\begin{array}{ccc}Dx_{} &txz\\tzx&Dz\\\end{array}\right]

where Dx is the direct stress along x ; Dz is direct stress along z ;  tzx and txz are the  shear stress components

We know that the stress tensor matrix is symmetrical which means that tzx = txz  ( obtained by moment equlibrium )

thus we require only 1 independent component of shear stress to define the whole stress tensor at a point in 2D plane

8 0
3 years ago
The complex power of a load is 10-10j VA. What component should be added in parallel with the load so that the new load has a un
Korolek [52]
Need points bdjdjdhdhd
7 0
3 years ago
Knowing that v = –8 m/s when t = 0 and v = 8 m/s when t = 2 s, determine the constant k. (Round the final answer to the nearest
docker41 [41]

Answer:

a)We know that acceleration a=dv/dt

So dv/dt=kt^2

dv=kt^2dt

Integrating we get

v(t)=kt^3/3+C

Puttin t=0

-8=C

Putting t=2

8=8k/3-8

k=48/8

k=6

5 0
3 years ago
For each of the following combinations of parameters, determine if the material is a low-loss dielectric, a quasi-conductor, or
Alborosie

Answer:

Glass: Low-Loss dielectric

  α = 8.42*10^-11 Np/m

  β = 468.3 rad/m

  λ = 1.34 cm

  up = 1.34*10^8 m/s

  ηc = 168.5 Ω

Tissue: Quasi-Conductor

  α = 9.75 Np/m

  β = 12.16 rad/m

  λ = 51.69 cm

  up = 0.52*10^8 m/s

  ηc = 39.54 + j 31.72 Ω        

Wood: Good conductor

  α = 6.3*10^-4 Np/m

  β = 6.3*10^-4 Np/m

  λ = 10 km

  up = 0.1*10^8 m/s

  ηc = 6.28*( 1 + j )

Explanation:

Given:

Glass with µr = 1, εr = 5, and σ = 10−12 S/m at 10 GHz

Animal tissue with µr = 1, εr = 12, and σ = 0.3 S/m at 100 MHz.

Wood with µr = 1, εr = 3, and σ = 10−4 S/m at 1 kHz

Find:

Determine if  the material is a low-loss dielectric, a quasi-conductor, or a good conductor, and then  calculate α, β, λ, up, and ηc:

Solution:

- We need to determine the loss tangent to determine category of the medium as follows:

                                σ / w*εr*εo

Where, w is the angular speed of wave

            εo is the permittivity of free space = 10^-9 / 36*pi

- Now we classify as follows:

    Glass = \frac{10^-^1^2 }{2*\pi * 10*10^9 * \frac{5*10^-^9}{36\pi } } = 3.6*10^-^1^3\\\\Tissue = \frac{0.3 }{2*\pi * 100*10^6 * \frac{12*10^-^9}{36\pi } } = 4.5\\\\Wood = \frac{10^-^4 }{2*\pi * 1*10^3 * \frac{3*10^-^9}{36\pi } } = 600\\  

- For σ / w*εr*εo < 0.01 --- Low-Loss dielectric and σ / w*εr*εo > 100 --- Good conducting material.

    Glass: Low-Loss dielectric

    Tissue: Quasi-Conductor

    Wood: Good conductor

- Now we will use categorized material base equations from Table 17-1 as follows:

     Glass: Low-Loss dielectric

          α = (σ / 2)*sqrt(u / εr*εo) = (10^-12 / 2)*sqrt( 4*pi*10^-7/5*8.85*10^-12)

          α = 8.42*10^-11 Np/m

          β = w*sqrt (u*εr*εo) = 2pi*10^10*sqrt (4*pi*10^-7*5*8.85*10^-12)

          β = 468.3 rad/m

          λ = 2*pi / β = 2*pi / 468.3

          λ = 1.34 cm

          up = λ*f = 0.0134*10^10

          up = 1.34*10^8 m/s

          ηc = sqrt ( u / εr*εo ) = sqrt( 4*pi*10^-7/12*8.85*10^-12)

          ηc = 168.5 Ω

     Tissue: Quasi-Conductor

          α = (σ / 2)*sqrt(u / εr*εo) = (0.3 / 2)*sqrt( 4*pi*10^-7/12*8.85*10^-12)

          α = 9.75 Np/m

          β = w*sqrt (u*εr*εo) = 2pi*100*10^6*sqrt (4*pi*10^-7*12*8.85*10^-12)

          β = 12.16 rad/m

          λ = 2*pi / β = 2*pi / 12.16

          λ = 51.69 cm

          up = λ*f = 0.5169*100*10^6

          up = 0.52*10^8 m/s

          ηc = sqrt ( u / εr*εo )*( 1 - j (σ / w*εr*εo))^-0.5

          ηc = sqrt (4*pi*10^-7*12*8.85*10^-12)*( 1 - j 4.5)^-0.5

          ηc = 39.54 + j 31.72 Ω

     Wood: Good conductor

          α = sqrt (pi*f*σ u) = sqrt( pi* 10^3 *4*pi* 10^-7 * 10^-4 )

          β = α = 6.3*10^-4 Np/m

          λ = 2*pi / β = 2*pi / 6.3*10^-4

          λ = 10 km

          up = λ*f = 10,000*1*10^3

          up = 0.1*10^8 m/s

          ηc = α*( 1 + j ) / б = 6.3*10^-4*( 1 + j ) / 10^-4

          ηc = 6.28*( 1 + j )

         

           

         

8 0
3 years ago
Other questions:
  • The function below takes a single parameter, a list of numbers called number_list. Complete the function to return a string of t
    14·1 answer
  • Draw an ERD for each of the following situations. (If you believe that you need to make additional assumptions, clearly state th
    15·1 answer
  • A spring-loaded piston-cylinder contains 1 kg of carbon dioxide. This system is heated from 104 kPa and 25 °C to 1,068 kPa and 3
    6·1 answer
  • WHAT IS MEANT BY BJT AND FUNCTION OF BJT
    8·1 answer
  • Consider a machine of mass 70 kg mounted to ground through an isolation system of total stiffness 30,000 N/m, with a measured da
    9·1 answer
  • What is a beam on a bridge? what does it do?
    6·1 answer
  • Explain the importance of water quality in aquaculture business.
    8·2 answers
  • A rigid vessel with a volume of 10 m3 contains a water-vapor mixture at 400 kPa. If the quality is 60 percent, find the mass. Th
    11·1 answer
  • 6) Describe the differences between the troposphere and stratosphere.
    14·1 answer
  • Drop the name below the corresponding part. (Look at the picture above to answer)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!