Answer:
1.5 M.
Explanation:
- Molarity (M) is defined as the no. of moles of solute dissolved in a 1.0 L of the solution.
<em>M = (no. of moles of LiBr)/(Volume of the solution (L).</em>
<em></em>
∵ no. of moles of LiBr = (mass/molar mass) of LiBr = (97.7 g)/(86.845 g/mol) = 1.125 mol.
Volume of the solution = 750.0 mL = 0.75 L.
∴ M = (no. of moles of luminol)/(Volume of the solution (L) = (1.125 mol)/(0.75 L) = 1.5 M.
So your answer would pretty much be 2.80 x 10^24. The picture is just the explanation and how you would get that answer.
Answer : The correct options are,
and 
Explanation :
Single displacement reaction : It is a type of chemical reaction in which the more reactive element displaces the less reactive element.
Option A reaction : 
It is an example of double displacement reaction because in this reaction a positive cation and a negative anion of the two reactants exchange their places to form two new products.
Option B reaction : 
It is an example of single displacement reaction.
Option C reaction : 
It is an example of combination reaction because in this reaction two reactants react to give a single product.
Option D reaction : 
It is an example of decomposition reaction because in this reaction a single reactant decomposes into two or more products.
Option E reaction : 
It is an example of single displacement reaction because in this reaction the most react element, aluminium displaces the less reactive element, hydrogen.
Hence, the options B and E are single displacement reactions.
Format Method - Writing the symbol of the cation and then the anion. Add whatever subscripts in order to balance the charges.
Crisscross Method - The numerical value of the charge of each ion is crossed over and becomes the subscripts for the other ion.
Answer:
25.7 mL
Explanation:
Step 1: Given data
- Initial concentration (C₁): 0.350 M
- Final volume (V₂): 600 mL
- Final concentration (C₂): 0.150 M
Step 2: Calculate the volume of the initial solution
We have a concentrated solution and we want to prepare a diluted one. We can calculate the initial volume using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 0.150 M × 600 mL / 0.350 M
V₁ = 25.7 mL