Answer: The Answer is 18.7ml.
Explanation: Solved in the attached picture.
1.7960L
Explanation:
the mass of the gas is constant in both instances
pv/T=constant(according to pv=nRT)
745mmHg*2L/298K=760mmHg*v/273K
v=1.7960L
Answer: This would be considered concentrated because if you're upping the recipe on your own accord, it would be way more sour, causing the lemonade to be more concentrated. It would be diluted if you added less than 2 lemons.
Answer: The correct option is heterogeneous mixture whose components are attracted differently to a magnet.
Explanation: There are two types of mixtures:
1) Homogeneous mixtures: In these mixtures, the particles are uniformly distributed throughout the mixture. These particles cannot be separated.
2) Heterogeneous Mixtures: These are the mixtures where the particles are visible separated and are not-uniformly distributed. These particles can be separated easily.
If magnet is used to separate the components of a mixture, the heterogeneous mixtures will only get separated.
To separate the components by a magnet, the components of a mixture should attract the magnet differently. One component should attract the magnet and another should not. Hence, they can be easily separated.
Answer:
0.56L
Explanation:
This question requires the Ideal Gas Law:
where P is the pressure of the gas, V is the volume of the gas, n is the number of moles of the gas, R is the Ideal Gas constant, and T is the Temperature of the gas.
Since all of the answer choices are given in units of Liters, it will be convenient to use a value for R that contains "Liters" in its units:
Since the conditions are stated to be STP, we must remember that STP is Standard Temperature Pressure, which means
and 
Lastly, we must calculate the number of moles of
there are. Given 0.80g of
, we will need to convert with the molar mass of
. Noting that there are 2 oxygen atoms, we find the atomic mass of O from the periodic table (16g/mol) and multiply by 2: 
Thus, 
Isolating V in the Ideal Gas Law:


...substituting the known values, and simplifying...


So, 0.80g of
would occupy 0.56L at STP.