Answer:
0.000025s
Explanation:
Period it’s. : T(s)= 1/f(Hz)=1/40000Hz=0.000025s
Answer:
(a) 91 kg (2 s.f.) (b) 22 m
Explanation:
Since it is stated that a constant horizontal force is applied to the block of ice, we know that the block of ice travels with a constant acceleration and but not with a constant velocity.
(a)

Subsequently,

*Note that the equations used above assume constant acceleration is being applied to the system. However, in the case of non-uniform motion, these equations will no longer be valid and in turn, calculus will be used to analyze such motions.
(b) To find the final velocity of the ice block at the end of the first 5 seconds,

According to Newton's First Law which states objects will remain at rest
or in uniform motion (moving at constant velocity) unless acted upon by
an external force. Hence, the block of ice by the end of the first 5
seconds, experiences no acceleration (a = 0) but travels with a constant
velocity of 4.4
.

Therefore, the ice block traveled 22 m in the next 5 seconds after the
worker stops pushing it.
We can’t see the following
The answer is a inductive
Answer:
Magnitude of the force is 2601.9 N
Explanation:
m = 450 kg
coefficient of static friction μs = 0.73
coefficient of kinetic friction is μk = 0.59
The force required to start crate moving is
.
but once crate starts moving the force of friction is reduced
.
Hence to keep crate moving at constant velocity we have to reduce the force pushing crate ie
.
Then the above pushing force will equal the frictional force due to kinetic friction and constant velocity is possible as forces are balanced.
Magnitude of the force
