B, heat, is the correct answer. Heat is represented by a capital q in thermodynamic equations.
I can't decide between A and B, but B seems more likely to me. Even though the molecules don't look like they're moving, the area of contact is slightly more compressed.
Answer:
The new kinetic energy would be 16 times greater than before.
Explanation:
Kinetic energy is found using this formula:
- KE = 1/2mv²
- where KE = kinetic energy (J), m = mass (kg), and v = velocity (m/s)
We can see that kinetic energy is directly proportional to the square of the velocity, meaning that if the speed was increased by 4 times, then the kinetic energy would get increased by a factor of 16.
The velocity just before the ball hits the ground can be found by the equation:
Let's substitute h = 10 m and h = 40 m into this formula.
We can see that the velocity increases by a factor of 4 (10 m → 40 m).
Therefore, this means that the kinetic energy would also be increased by a factor of (4)² = 16. Thus, the answer is D) The new kinetic energy would be 16 times greater than before.
Set deer A's position to be the origin. Let
be the distance from deer A to deer C. We're given that deer B is 95 m away from deer C, which means the length of the vector
is 95 (or
). Then




an unexpected visitor as it begins making you feel uncomfortable but it's get calm