The North Magnetic Pole is the point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downwards (in other words, if a magnetic compass needle is allowed to rotate about a horizontal axis, it will point straight down). There is only one location where this occurs, near (but distinct from) the Geographic North Pole and the Geomagnetic North Pole. So yes true
Answer:

Explanation:
From the question we are told that:
Mass 
Charge 
Velocity 
Length of Wire 
Current 
Generally the equation for Magnetic Field of Wire B is mathematically given by



Generally the equation for Force on the plane F is mathematically given by

Therefore




Therefore in Terms of g's


Answer:
I think the 1st statement is right.
Explanation:
Wind patterns doesn't stay the same.
Waves don't follow the same patterns.
Waves move further up the shore.
I didn't hear about "waves adding" before..so i guess 1st statement is right.
Answer:
the angular acceleration of the gate is approximately 1.61 
Explanation:
Recall the formula that connects the net torque with the moment of inertia of a rotating object about its axis of rotation, and the angular acceleration (similar to Newton's second law with net force, mass, and linear acceleration):

In our case, both forces contribute to the same direction of torque, so we can add their torques up and get the net torque on the gate:

Now we use this value to obtain the angular acceleration by using the given moment of inertia of the rotating gate:

Answer:
Yes, a force is require to set an object in motion.
Explanation:
- In space, even if you feel weightless, you are subject to motion. If you are orbiting the Earth, you are under the constant influence of Earth having a free-fall acceleration equal to the centripetal acceleration.
- To disturb this orbital motion, an external force is required.
- According to Newton's laws of motion, a force is required to change the state of the rest of a body or to change the velocity or direction if it is moving with uniform velocity along a straight line.
- Whenever there is a change in velocity or direction of a body there is a force acting on it.