The speed of cart b is 6m/s while the total momentum of the systmen is 4200 kg m/s
<h3>Conservation of Linear Momentum</h3>
Given Data
- Mass of cart one M1 = 150kg
- Initial Velocity U1 = 8m/s
Mass of cart two M2 = 150kg
Velocity U2 = 6m/s
Applying the principle of conservation of linear momentum we have
M1U1+M2U2 = M1V1+ M2V2
a. what is the speed of cart b after collision
substituting our given data we have
150*8+ 150*6 = 150*5+150*V2
1200 + 900 = 1200+ 150V2
2100 - 1200 = 150V2
900 = 150V2
Divide both sides by 150
V2 = 900/150
V2 = 6m/s
b. what is the total momentum of the system before and after collision
Total Momentum in the system is
Total momentum = Momentum before Impact+ Momentum after Impact
Total momentum = M1U1+M2U2 + M1V1+ M2V2
Total momentum = 1200 + 900 + 1200+ 900
Total momentum = 4200 kg m/s
Learn more about Conservation of Linear Momentum here:
brainly.com/question/7538238
The answer is donate, therefore elements with positive valences usually donate electrons
Answer:
A. It is always a positive force
Explanation:
Hooke's law describes the relation between an applied force and extension ability of an elastic material. The law states that provided the elastic limit, e, of a material is not exceeded, the force, F, applied is proportional to the extension, x, provided temperature is constant.
i.e F = - kx
where k is the constant of proportionality, and the minus sign implies that the force is a restoring force.
The applied force can either be compressing or stretching force.
Hi there!
Impulse = Change in momentum
I = Δp = mΔv = m(vf - vi)
Where:
m = mass of object (kg)
vf = final velocity (m/s)
vi = initial velocity (m/s)
Begin by converting grams to kilograms:
1 kg = 1000g ⇒ 145g = .145kg
Now, plug in the given values. Remember to assign directions since velocity is a vector. Let the initial direction be positive and the opposite be negative.
I = (.145)(-20 - 17) = -5.365 Ns
The magnitude is the absolute value, so:
|-5.365| = 5.365 Ns
Ignoring the air resistance it will take about 3 seconds for the object to reach the ground.We know that the acceleration due to gravity is 10m/s2.
We also know that the final velocity is 30 m/s while the initial velocity is 0 m/s
we can use the formulae for acceleration to calculate the time taken/
(final - initial velocity)/timetaken=10
(30-0)/timetaken=10
timetaken =30/10=3 seconds