Answer:
Explanation:
As a skydiver falls, he accelerates downwards, gaining speed with each second. The increase in speed is accompanied by an increase in air resistance. This force of air resistance counters the force of gravity.
Answer:
I reckon towards b. Let me know if im right
Answer:
c) 2.02 x 10^16 nuclei
Explanation:
The isotope decay of an atom follows the equation:
ln[A] = -kt + ln[A]₀
<em>Where [A] is the amount of the isotope after time t, k is decay constant, [A]₀ is the initial amount of the isotope</em>
[A] = Our incognite
k is constant decay:
k = ln 2 / Half-life
k = ln 2 / 4.96 x 10^3 s
k = 1.40x10⁻⁴s⁻¹
t is time = 1.98 x 10^4 s
[A]₀ = 3.21 x 10^17 nuclei
ln[A] = -1.40x10⁻⁴s⁻¹*1.98 x 10^4 s + ln[3.21 x 10^17 nuclei]
ln[A] = 37.538
[A] = 2.01x10¹⁶ nuclei remain ≈
<h3>c) 2.02 x 10^16 nuclei</h3>
The answer is up . tylrhscjwizn
Answer:
h = 90.10 m
Explanation:
Given that,
A man is standing near the edge of a cliff 85 meters high, h₀ = 85 m
The initial speed of the stone, u = 10 m/s
The path followed by the projectile is given by :
....(1)
For maximum height,
Put dh/dt = 0
So,

Put the value of t in equation (1).

So, the maximum height of the stone is equal to 90.10 m.