A, B, and C are all incorrect because they are talking about springs. I'm assuming you're talking about a 2 dimensional, side to side pendulum. In that case, the answer is D because as the pendulum goes up from one side, gravity accelerates it downward until it swings to the other side. If you're not talking about this type of pendulum, leave a comment and ill come back.
Well we know the hypotenuse of the triangle which is 253 m. And we know the angle of the triangle which is 55.8 degrees. So we want to find y. And to find y we use sin. And sin is a ratio, the ratio of the opposite leg, and hypotenuse. So sin(55.8) = y/253. Now we solve for y by multiplying both sides by 253. And finally we get 209.25 as the length of the y component.
Answer:
ω = 2.1 rad/sec
Explanation:
- As the rock is moving along with the merry-go-round, in a circular trajectory, there must be an external force, keeping it on track.
- This force, that changes the direction of the rock but not its speed, is the centripetal force, and aims always towards the center of the circle.
- Now, we need to ask ourselves: what supplies this force?
- In this case, the only force acting on the rock that could do it, is the friction force, more precisely, the static friction force.
- We know that this force can be expressed as follows:

where μs = coefficient of static friction between the rock and the merry-
go-round surface = 0.7, and Fn = normal force.
- In this case, as the surface is horizontal, and the rock is not accelerated in the vertical direction, this force in magnitude must be equal to the weight of the rock, as follows:
- Fn = m*g (2)
- This static friction force is just the same as the centripetal force.
- The centripetal force depends on the square of the angular velocity and the radius of the trajectory, as follows:

- Since (1) is equal to (3), replacing (2) in (1) and solving for ω, we get:

- This is the minimum angular velocity that would cause the rock to begin sliding off, due to that if it is larger than this value , the centripetal force will be larger that the static friction force, which will become a kinetic friction force, causing the rock to slide off.
Answer:
Convection
Explanation:
The method of heat transfer that allows heat to rise via vertical transport of heated part of a fluid (gas or liquid) and replace the fluid upper layers is called "convection"
This is the concept of application of Pythagorean theorem and algebra;
Suppose the the length of the ladder is x ft, the distance from the ground to the top of the ladder will be (x-8) ft, the distance from the bottom of the ladder to the building is 16ft, thus to find the length of the ladder we proceed as follows;
c^2=a^2+b^2
x^2=(x-8)^2+16^2
x^2=x^2-16x+64+256
collecting the like terms we get:
x^2-x^2+16x=320
16x=320
solving for x we get:
x=320/16
x=20 ft
the answer is x=20 ft