True
Variables is changing. It is any factor, trait or condition that can exist in differing amounts or types. An experiment has three types: Independent, Dependent and Controlled.
Sure.
Can I use your answer to part-'a' ?
If the angular acceleration is actually 32 rev/min², than
after 1.2 min, it has reached the speed of
(32 rev/min²) x (1.2 min) = 38.4 rev/min .
Check:
If the initial speed is zero and the final speed is 38.4 rpm,
then the average speed during the acceleration period is
(1/2) (0 + 38.4) = 19.2 rpm average
At an average speed of 19.2 rpm for 1.2 min,
it covers
(19.2 rev/min) x (1.2 min) = 23.04 revs .
That's pretty close to the "23" in the question, so I think that
everything here is in order.
Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2
Find:
Horizontal displacement
Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s
Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
The first thing you should know to solve this problem is the conversion of pounds to kilograms:
1lb = 0.45 Kg
We can solve this problem by a simple rule of three
1lb ---> 0.45Kg
125lb ---> x
Clearing x we have:
x = ((125) / (1)) * (0.45) = 56.25 Kg.
Answer
her mass expressed in kilograms is 56.25 Kg.
Answer:
ac = 72 m/s²
Fc = 504 N
Explanation:
We can find the centripetal acceleration of the hammer by using the following formula:

where,
ac = centripetal acceleration = ?
v = constant speed = 12 m/s
r = radius = 2 m
Therefore,

<u>ac = 72 m/s²</u>
<u></u>
Now, the centripetal force applied by the athlete on the hammer will be:

<u>Fc = 504 N</u>