it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]
Because it's the basis of how everything around you works
The answer would be 981 newtons or 220.46 pounds.
Answer:
AFter 3.5 s, the wagon is moving at: 
Explanation:
Let's start by finding first the net force on the wagon, and from there the wagon's acceleration (using Newton's 2nd Law):
Net force = 250 N + 178 N = 428 N
Therefore, the acceleration from Newton's 2nd Law is:

So now we apply this acceleration to the kinematic expression for velocity in an object moving under constant acceleration:

Answer:
B = 4.1*10^-3 T = 4.1mT
Explanation:
In order to calculate the strength of the magnetic field, you use the following formula for the magnetic flux trough a surface:
(1)
ФB: magnetic flux trough the circular surface = 6.80*10^-5 T.m^2
S: surface area of the circular plate = π.r^2
r: radius of the circular plate = 8.50cm = 0.085m
B: magnitude of the magnetic field = ?
α: angle between the direction of the magnetic field and the normal to the surface area of the circular plate = 43.0°
You solve the equation (1) for B, and replace the values of the other parameters:

The strength of the magntetic field is 4.1mT