Answer:
A) 0
Step-by-step explanation:
When x is divided by 11, we have a quotient of y and a remainder of 3
x/11 = y + 3
x = 11y + 3 ........(1)
When x is divided by 19, we have a remainder of 3 also
x/19 = p + 3 (p = quotient)
x = 19p + 3 ..........(2)
Equate (1) and (2)
x = 11y + 3 = 19p + 3
11y + 3 = 19p + 3
11y = 19p + 3 -3
11y = 19p
Divide both sides by 11
11y/11 = 19p/11
y = 19p/11
y and p are integers. 19 is a prime number. P/11 is also an integer
y = 19(integer)
This implies that y is a multiple of 19. When divided by 19, there is no remainder. The remainder is 0
(x²+4x+3)/2(x²-10x+25)
the horizontal asymptote when the numerator and the denominator have the same degree (in this case, both of a degree of 2) is ration of the coefficients of the numerator and denominator. In this case, the coefficient for numerator x² is 1, and the coefficient for the denominator 2x² is 2, so the horizontal asymptote is y=1/2=0.5
the vertical asymptote is the x value. the denominator cannot be zero, if x²-10x+25=0, x would be 5, so the vertical asymptote is x=5
this is just one example. There can be others:
(2x²+5x+2)/[(4x-7)(x-5)] for another example, but this example has a second vertical asymptote 4x-7=0 =>x=7/4
The top left graph is the only one correct. It rises up slowly then faster, and then stays constant for an hour, then decreases.
<h3>Answer: Choice C</h3>
- domain = (-infinity, infinity)
- range = (-infinity, 0)
- horizontal asymptote is y = 0
========================================================
Explanation:
Since no division by zero errors are possible, and other domain restricting events are possible, we can plug in any x value we want. This means the domain is the set of all real numbers. Representing this in interval notation would be (-infinity, infinity).
The range is the set of negative real numbers, which when written in interval notation would be (-infinity, 0). This is because y = 5^x has a range of positive real numbers, and it flips when we negate the 5^x term. The graph of y = -5^x extends forever downward, and the upper limit is y = 0.
It never reaches y = 0 itself, so this is the horizontal asymptote. Think of it like an electric fence you can get closer to but can't touch.