The expression for the radius and height of the cone can be obtained from
the property of a function at the maximum point.
- The height of the cone is half the length of the radius of the circular sheet metal.
Reasons:
The part used to form the cone = A sector of a circle
The length of the arc of the sector = The perimeter of the circle formed by the base of the cone.

θ/360·2·π·s = 2·π·r
Where;
s = The radius of he circular sheet metal
h = s² - r²
3·r²·s² - 4·r⁴ = 0
3·r²·s² = 4·r⁴
3·s² = 4·r²


Learn more here:
brainly.com/question/14466080
Answer:
A. The forces are the same size and in opposite directions.
Explanation:
Just as an opposite number will cancel a number: -1 +1 = 0, so an opposite force will cancel a force, with the result that the net is zero.
Explanation:
Below is an attachment containing the solution.
<span>22.5 newtons.
First, let's determine how much energy the stone had at the moment of impact. Kinetic energy is expressed as:
E = 0.5mv^2
where
E = Energy
m = mass
v = velocity
Substituting known values and solving gives:
E = 0.5 3.06 kg (7 m/s)^2
E = 1.53 kg 49 m^2/s^2
E = 74.97 kg*m^2/s^2
Now ignoring air resistance, how much energy should the rock have had?
We have a 3.06 kg moving over a distance of 10.0 m under a force of 9.8 m/s^2. So
3.06 kg * 10.0 m * 9.8 m/s^2 = 299.88 kg*m^2/s^2
So without air friction, we would have had 299.88 Joules of energy, but due to air friction we only have 74.97 Joules. The loss of energy is
299.88 J - 74.97 J = 224.91 J
So we can claim that 224.91 Joules of work was performed over a distance of 10 meters. So let's do the division.
224.91 J / 10 m
= 224.91 kg*m^2/s^2 / 10 m
= 22.491 kg*m/s^2
= 22.491 N
Rounding to 3 significant figures gives an average force of 22.5 newtons.</span>