Answer:

Explanation:
v = Velocity of the breeze = 4 m/s
w = Width of the valley = 5000 m
h = Height of the valley = 1000 m
Volumetric flow rate is given by

= Mass flow rate of pollutant = 25 g/s = 
Concentration is given by

The steady state concentration of pollutants in the valley, is
.
Answer:
The ball stops instantaneously at the topmost point of the motion.
Explanation:
Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.
The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.
The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.
It makes the data thet they collect more reliable so if they need the data again, they have already tested it a few times so therefor they know that it is right.
First we need to find the speed of the dolphin sound wave in the water. We can use the following relationship between frequency and wavelength of a wave:

where
v is the wave speed

its wavelength
f its frequency
Using

and

, we get

We know that the dolphin sound wave takes t=0.42 s to travel to the tuna and back to the dolphin. If we call L the distance between the tuna and the dolphin, the sound wave covers a distance of S=2 L in a time t=0.42 s, so we can write the basic relationship between space, time and velocity for a uniform motion as:

and since we know both v and t, we can find the distance L between the dolphin and the tuna:
The answer to this statement is true!