The correct answers are as follows:
<span>1) hydrogenous sediment
2)sand and gravel
3) They rapidly break down at surface temperatures and pressures.</span>
Answer- There are two reasons that we know quotations have been used first is the use of of name of the person who quoted it and secondly the quotation is written inside the quotation marks.
Explanation- Quotation is nothing but using a line that has been already quoted by someone somewhere. Such sentences are normally written inside quotation marks. In the above given paragraph the name of the person who quotes the sentence is also given hence we know that our quotation has been used.
For a reaction to occur, energy must be absorbed to break chemical bonds
<u>Explanation:</u>
Reactions can be classified as chemical reaction, nuclear reaction, thermal reaction. So in these three reaction types, the nature of energy will only be varying.
But in order to execute a reaction, there should be breaking of existing bonds and then formation of new bonds. So for breaking of the bonds of reactants, energy should be absorbed from the surrounding.
Then the extra energy will be released after forming the products. Thus, the process of absorption of energy will lead to endothermic process and the process of releasing of energy will lead to exothermic reaction. So for a reaction to occur, energy must be absorbed to break the chemical bonds.
I have all the answers here so take this
Answer:
The launching point is at a distance D = 962.2m and H = 39.2m
Explanation:
It would have been easier with the drawing. This problem is a projectile launching exercise, as they give us data after the window passes and the wall collides, let's calculate with this data the speeds at the point of contact with the window.
X axis
x = Vox t
t = x / vox
t = 7.1 / 340
t = 2.09 10-2 s
In this same time the height of the window fell
Y = Voy t - ½ g t²
Let's calculate the initial vertical speed, this speed is in the window
Voy = (Y + ½ g t²) / t
Voy = [0.6 + ½ 9.8 (2.09 10⁻²)²] /2.09 10⁻² = 0.579 / 0.0209
Voy = 27.7 m / s
We already have the speed at the point of contact with the window. Now let's calculate the distance (D) and height (H) to the launch point, for this we calculate the time it takes to get from the launch point to the window; at this point the vertical speed is Vy2 = 27.7 m / s
Vy = Voy - gt₂
Vy = 0 -g t₂
t₂ = Vy / g
t₂ = 27.7 / 9.8
t₂ = 2.83 s
This is the time it also takes to travel the horizontal and vertical distance
X = Vox t₂
D = 340 2.83
D = 962.2 m
Y = Voy₂– ½ g t₂²
Y = 0 - ½ g t2
H = Y = - ½ 9.8 2.83 2
H = 39.2 m
The launching point is at a distance D = 962.2m and H = 39.2m