Answer:
5.39 m
Explanation:
From kinematics
where t is time, s is distance and
is initial speed in x direction


Now 17.5=17.6634 t
=0.99 s
Using the equation of kinematics


h=5.39 m
Answer:
Negative acceleration occurs when an object speeds up in the negative direction.
Positive acceleration occurs when an object speeds up in the positive direction.
Explanation:
This might be wrong but I get some points for a answer..
Answer:
Higher, Windward side, Condenses
Explanation:
The Windward side refers to that side of a mountain that faces the direction from which the wind is blowing. In this direction, the moisture containing hot air blowing from a distant place moves upward and strikes the mountain at a greater height, where the air mass is thin and the temperature is relatively cold. As the temperature and pressure decrease with altitude, the hot uprising air cools and gradually condenses. This results in the occurrence of high precipitation over this region i.e. the windward side of the mountain.
Therefore, the precipitation is always higher on the windward side of a mountain as the hot air undergoes condensation at greater height as it rises upward.
Answer:
Explanation:
Given that,
Number of turns of coil
N = 50 turns
Initial area of plane
A1 = 0.18 m²
The coil it stretch to a no area in time t = 0.1s
No area implies that the final area is 0, A2 = 0 m²
Constant magnetic field strength
B = 1.51 T
EMF?
EMF is given as
Using far away Lenz law
ε = —N• dΦ/dt
Where Φ = BA
Then,
ε = —N• d(BA)/dt
Since B is constant,
ε = —N•B dA/dt
ε = —N•B (∆A/∆t)
ε = —N•B(A2—A1)/(t2-t1)
ε = —50 × 1.51 (0—0.18)/(0.1—0)
ε =—75.5 × —0.18 / 0.1
ε = 135.9 V
The induced EMF is 135.9V
Fleming’s left hand rule stated that if the index finger points toward magnetic flux, the thumb towards the motion of the conductor, then the middle finger points towards the induced emf.
Since the area lines in the plane, then the induced emf will be out of the page
(a) The efficiency of an engine is defined as the ratio between the work done by the engine and the heat it takes in:

The engine in this problem does a work of

and it takes in

of heat, therefore its efficiency is

(b) The heat taken by the machine is 4000 J; of this amount of heat, only 1100 J are converted into useful work. This means that the rest of the heat is wasted. Therefore, the wasted heat is the difference between the heat in input and the work done by the engine: