1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
8

An observation which is descriptive is considered quantitative, creative, qualitive

Physics
2 answers:
mr Goodwill [35]3 years ago
4 0

Explanation:  An observation is can be a collected information itself. It is an informal action, but it can be formal too and involve data collection. In descriptive observation one do not wish to modify the activity, he want it to get registered such as it would take place without his presence. In this observations are detailed and focused, in which questions about a phenomenon are carefully  examined and expressed at the outset that is why it is considered quantative as well as qualitative.

Vesnalui [34]3 years ago
3 0
A descriptive observation may very well be a mixture of both quantitative and qualitative as it can utilize elements of both types. Qualitative deals with the kinds of observations that cannot be measured in numerical form. Quantitative data is just that.
You might be interested in
Explain how sound travels through the air to observer
Harlamova29_29 [7]
Sample:
As soon as the lightning is seen, sound travels in the air for several kilometers until it eventually reaches the observer.
3 0
4 years ago
A long metal cylinder with radius a is supported on an insulating stand on the axis of a long, hollow, metal tube with radius b.
bija089 [108]

a)

i) Potential for r < a: V(r)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

ii) Potential for a < r < b:  V(r)=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r}

iii) Potential for r > b: V(r)=0

b) Potential difference between the two cylinders: V_{ab}=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

c) Electric field between the two cylinders: E=\frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}

Explanation:

a)

Here we want to calculate the potential for r < a.

Before calculating the potential, we have to keep in mind that the electric field outside an infinite wire or an infinite cylinder uniformly charged is

E=\frac{\lambda}{2\pi \epsilon_0 r}

where

\lambda is the linear charge density

r is the distance from the wire/surface of the cylinder

By integration, we find an expression for the electric potential at a distance of r:

V(r) =\int Edr = \frac{\lambda}{2\pi \epsilon_0} ln(r)

Inside the cylinder, however, the electric field is zero, because the charge contained by the Gaussian surface is zero:

E=0

So the potential where the electric field is zero is constant:

V=const.

iii) We start by evaluating the potential in the region r > b. Here, the net electric field is zero, because the Gaussian surface of radius r here contains a positive charge density +\lambda and an equal negative charge density -\lambda. Therefore, the net charge is zero, so the electric field is zero.

This means that the electric potential is constant, so we can write:

\Delta V= V(r) - V(b) = 0\\\rightarrow V(r)=V(b)

However, we know that the potential at b is zero, so

V(r)=V(b)=0

ii) The electric field in the region a < r < b instead it is given only by the positive charge +\lambda distributed over the surface of the inner cylinder of radius a, therefore it is

E=\frac{\lambda}{2\pi r \epsilon_0}

And so the potential in this region is given by:

V(r)=\int\limits^b_r {Edr} = \frac{\lambda}{2\pi \epsilon_0}  (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r} (1)

i) Finally, the electric field in the region r < a is zero, because the charge contained in this region is zero (we are inside the surface of the inner cylinder of radius a):

E = 0

This means that the potential in this region remains constant, and it is equal to the potential at the surface of the inner cylinder, so calculated at r = a, which can be calculated by substituting r = a into expression (1):

V(a)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

And so, for r<a,

V(r)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

b)

Here we want to calculate the potential difference between the surface of the inner cylinder and the surface of the outer cylinder.

We have:

- Potential at the surface of the inner cylinder:

V(a)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

- Potential at the surface of the outer cylinder:

V(b)=0

Therefore, the potential difference is simply equal to

V_{ab}=V(a)-V(b)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

c)

Here we want to find the magnitude of the electric field between the two cylinders.

The expression for the electric potential between the cylinders is

V(r)=\int\limits^b_r {Edr} = \frac{\lambda}{2\pi \epsilon_0}  (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r}

The electric field is just the derivative of the electric potential:

E=-\frac{dV}{dr}

so we can find it by integrating the expression for the electric potential. We find:

E=-\frac{d}{dr}(\frac{\lambda}{2\pi \epsilon_0} (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}

So, this is the expression of the electric field between the two cylinders.

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
To get maximum current in a circuit, the resistance should be in _____
Tanzania [10]

Answer:

Series is the correct answer

5 0
3 years ago
Read 2 more answers
Above
GaryK [48]
It had to be b Druidic
8 0
2 years ago
What did James Cameron use on his 2nd visit to this famous ship to look inside?
OlgaM077 [116]

Answer:

beneath the surface of the Pacific Ocean comes from samples and video collected by an unmanned lander

5 0
3 years ago
Other questions:
  • Which are methods of reducing exposure to ionizing radiation? Check all that apply
    10·2 answers
  • Which statement is true of forces?
    8·1 answer
  • What role does induction play when lightning strikes earth?
    14·1 answer
  • What happens to the gravitation force between two objects that are 15 m apart, when one of them moves 3 m closer?
    9·1 answer
  • The elements selenium and oxygen are both poor electrical conductors. In which section of the periodic table are they
    14·1 answer
  • The phosphorus cycle is important to ecosystems. Choose all of these statements that are true concerning the phosphorus cycle.
    7·2 answers
  • . If the centripetal and thus frictional force between the tires and the roadbed of a car moving in a circular
    5·1 answer
  • How do you use vectors daily without realizing it was a vector?<br><br> I need help ASAP !!!
    6·1 answer
  • A meteorologist tries to forecast the weather by comparing the past and _______ areas on a weather map.
    10·1 answer
  • A child kicks a ball horizontally with a speed of 2.8 m/s from the end of a deck that is 8.5 m high.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!