Answer:
<u>20 Minutes</u>
<u></u>
Explanation:
Well we know Mph (Miles per hour) is distance over time : 
R (rate) = 60
d (distance) = 20
t (time) = Unknown
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R =
↓
60 =
↓
t = 
↓
t =
or 0.3333
<em>So basically it would take one third of an hour. Lets change these units to minutes.</em>
60 * 0.333333 = 20
<em>So it would take you </em><u><em>20 minutes</em></u><em> to drive 20 miles on a bus that drives 60 mph</em>
<em />
Hope that helps
<em>~Siascon~</em>
Answer:
The average recoil force on the gun during that 0.40 s burst is 45 N.
Explanation:
Mass of each bullet, m = 7.5 g = 0.0075 kg
Speed of the bullet, v = 300 m/s
Time, t = 0.4 s
The change in momentum of an object is equal to impulse delivered. So,

For 8 shot burst, average recoil force on the gun is :

So, the average recoil force on the gun during that 0.40 s burst is 45 N.
Answer:
T=0.827s
Explanation:
The period of a spring can be calculated with the equation

But we know as well that w is given by,

Replacing,

So we have that

Answer: The fundamental frequency of the slinky = 8Hz
An input frequency of 28 Hz will not create a standing wave
Explanation:
Let Fo = fundamental frequency
At third harmonic,
F = 3Fo
If F = 24Hz
24 = 3Fo
Fo = 24/3 = 8Hz
If an input frequency = 28 Hz at 3rd harmonic
Let find the fundamental frequency
28 = 3Fo
Fo = 28/3
Fo = 9.33333Hz
Since Fo isn't a whole number, it can't create a standing wave
when wave propagate through the medium the medium particles have two type of possible motions
1) Transverse Waves : here medium particles will move perpendicular to wave propagation and they pull and push perpendicular to the length
2) Longitudinal wave : here medium particles will move to and fro along the length of the medium and the medium particles will push and pull together along the length of the string.
So here in two types of wave motion it will depends on the medium type as well as it will depend on the source how is wave produced.
So the given type of wave in which particles push together and pull apart the wave must be longitudinal wave.