Here is the answer. In order for us to get the speed, we are just going to use the formula speed is equal to distance over time. Given that the distance s 200m and the time is 25s, this would give us the answer of 8m/sec. Hope this answers your question.
Answer:
18600j
Explanation:
It is given that,
Number of moles = 3
Temperature, T = 25°C = 25+273 = 298 K
The internal energy of N₂ gas is given by :
U=f\times nRTU=f×nRT
f is degrees of freedom. For diatomic gas, degree of freedom is equal to 5/2. So,
\begin{gathered}U=\dfrac{5}{2}\times 3\times 8.31\times 298\\\\U=18572.85\ J\end{gathered}
U=
2
5×3×8.31×298
U=18572.85 J
or
U = 18600 J
So, the internal energy of the gas is 18,600 J
Slope of a curve Y plotted against X is mathematically given as

now here we can see that if similarly graph is plotted against distance and time then slope is given as

here we can say that above is ratio of small distance and very small interval of time.
so here we can say that this ratio of distance and time for very small interval of time is known as instantaneous speed of the object which is falling freely under gravity.
So here slope of the graph will represent the speed at a given instant.
Answer:
The work done against gravity is 78.4 J
Explanation:
The work is calculated by multiplying the force by the distance that the
object moves
W = F × d, where W is the work , F is the force and d is the distance
The SI unit of work is the joule (J)
We need to find the work done against gravity when lowering a
16 kg box 0.50 m
→ F = mg
→ m = 16 kg, and g = 9.8 m/s²
Substitute these value in the rule
→ F = 16 × 9.8 = 156.8 N
→ W = F × d
→ F = 156.8 N and d = 0.50
Substitute these values in the rule
→ W = 78.4 J
<em>The work done against gravity is 78.4 J</em>
The red box must way more. Gravitational potential energy is the product of a an objects mass times the acceleration due to gravity (which is constant on earth) times its height. Since the objects are on the same shelf they are at the same height, and since gravitational acceleration is constant as long as we stay on planet earth, then the mass is the only possible thing that could have changed. This means that the red box must weigh more than the blue box.