Answer:
Using the coarse adjustment knob of the microscope in high power may lead to the breaking of the slide if adjusted and raised the slide too much which can damage the sample as well as the high power lens.
In this case, I would recommend using the fine adjustment knob and moving away from the end of the viewing area of the microscope so there would no collision take place. The fine adjustment will help to get a clear image.
Answer: The density of 0.50 grams of gaseous carbon stored under 1.50 atm of pressure at a temperature of -20.0 °C is 0.867 g/L.
Explanation:
- d = m/V, where d is the density, m is the mass and V is the volume.
- We have the mass m = 0.50 g, so we must get the volume V.
- To get the volume of a gas, we apply the general gas law PV = nRT
P is the pressure in atm (P = 1.5 atm)
V is the volume in L (V = ??? L)
n is the number of moles in mole, n = m/Atomic mass, n = 0.50/12.0 = 0.416 mole.
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature in K (T(K) = T(°C) + 273 = -20.0 + 273 = 253 K).
- Then, V = nRT/P = (0.416 mol)(0.082 L.atm/mol.K)(253 K) / (1.5 atm) = 0.576 L.
- Now, we can obtain the density; d = m/V = (0.50 g) / (0.576 L) = 0.867 g/L.
There are 1.48 × 10²⁵ molecules of zinc oxide in a 2 kg sample. Details about number of molecules can be found below.
<h3>How to calculate number of molecules?</h3>
The number of molecules of a substance can be calculated by multiplying the number of moles of the substance by Avogadro's number.
According to this question, there are 2000g of ZnO in a sample. Zinc oxide has a molar mass of 81.38 g/mol.
no of moles = 2000g ÷ 81.38g/mol
no of moles = 24.57mol
number of molecules = 24.57 × 6.02 × 10²³
number of molecules = 147.95 × 10²³
Therefore, there are 1.48 × 10²⁵ molecules of zinc oxide in a 2 kg sample.
Learn more about number of molecules at: brainly.com/question/11815186
#SPJ1