1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
7

How as bohr's atomic model similar to Rutherford's model

Physics
2 answers:
zysi [14]3 years ago
6 0

Answer:

It described a nucleus surrounded by a large volume of space

Explanation:

In 1911 Rutherford, based on the results of his famous gold foil experiment, proposed that the atoms are made of positively charged and highly denser nucleus, around which the negatively charged and weightless electrons are revolving.

But he failed to provide the reason why the electrons are not continuously emitting electromagnetic radiation, since according to classical physics charged particle in circular motion emits radiation.

in 1913 Bohr improved this model by the quantization of orbits.

According to his theory electrons are revolving in stable orbits at particular radius and they emit radiation only when the move from one orbit to another.

So description of a nucleus surrounded by a large volume of space is the similarity to Rutherford’s model.

Lemur [1.5K]3 years ago
5 0

It described a nucleus surrounded by a large volume of space. ... Electrons travel around the nucleus in fixed energy levels with energies that vary from level to level. C) Electrons travel around the nucleus in fixed energy levels with equal amounts of energy.

You might be interested in
Can someone please help me match these up
yaroslaw [1]

Answer:

you need to give the answers choices

Explanation:

4 0
3 years ago
A straight 1.20 m long conductor has a 2.00 A current travelling toward the East. Earth's magnetic field in this location is 4.9
KATRIN_1 [288]

Answer:

Force's magnitude=1.176\,10^{-4}\,N

Direction: down (towards the center of the Earth)

Explanation:

Recall that the magnetic force on a conductor of length L carrying a current I in a magnetic field B is given by the equation: F=I\,L\,B in the case the magnetic field B and the direction of the current are at 90 degrees from each other (which is our case). The direction of the force will be given by the "right hand rule" associated with the vector product that defines this force.

Since the current is moving East, and the magnetic field of the Earth goes from North to South, the resultant Force vector will be pointing towards the Earth (and perpendicular to the plane defined by the current's direction and the magnetic field B)

The magnitude of the force, is given by the formula above, and given that all quantities to be considered are is SI units, it will result in Newtons (N):

F=I\,L\,B\\F=2\,*\,1.2\,*\,4.9\,10^{-5}\,N\\F=1.176\,10^{-4}\,N

8 0
4 years ago
A 190 g glider on a horizontal, frictionless air track is attached to a fixed ideal spring with force constant 160 N/m. At the i
laiz [17]

(a) Let <em>x</em> be the maximum elongation of the spring. At this point, the glider would have zero velocity and thus zero kinetic energy. The total work <em>W</em> done by the spring on the glider to get it from the given point (4.00 cm from equilibrium) to <em>x</em> is

<em>W</em> = - (1/2 <em>kx</em> ² - 1/2 <em>k</em> (0.0400 m)²)

(note that <em>x</em> > 4.00 cm, and the restoring force of the spring opposes its elongation, so the total work is negative)

By the work-energy theorem, the total work is equal to the change in the glider's kinetic energy as it moves from 4.00 cm from equilibrium to <em>x</em>, so

<em>W</em> = ∆<em>K</em> = 0 - 1/2 <em>m</em> (0.835 m/s)²

Solve for <em>x</em> :

- (1/2 (160 N/m) <em>x</em> ² - 1/2 (160 N/m) (0.0400 m)²) = -1/2 (0.190 kg) (0.835 m/s)²

==>   <em>x</em> ≈ 0.0493 m ≈ 4.93 cm

(b) The glider attains its maximum speed at the equilibrium point. The work done by the spring as it is stretched away from equilibrium to the 4.00 cm position is

<em>W</em> = - 1/2 <em>k</em> (0.0400 m)²

If <em>v</em> is the glider's maximum speed, then by the work-energy theorem,

<em>W</em> = ∆<em>K</em> = 1/2 <em>m</em> (0.835 m/s)² - 1/2 <em>mv</em> ²

Solve for <em>v</em> :

- 1/2 (160 N/m) (0.0400 m)² = 1/2 (0.190 kg) (0.835 m/s)² - 1/2 (0.190 kg) <em>v</em> ²

==>   <em>v</em> ≈ 1.43 m/s

(c) The angular frequency of the glider's oscillation is

√(<em>k</em>/<em>m</em>) = √((160 N/m) / (0.190 kg)) ≈ 29.0 Hz

3 0
2 years ago
Suppose you could fit 100 dimes, end to end, between your card with the pinhole and your dime-sized sunball. how many suns could
Naddika [18.5K]

Answer: 100 suns

Explanation:

We can solve this with the following relation:

\frac{d}{x_{sunball-pinhole}}=\frac{D}{x_{sun-pinhole}}

Where:

d=17.91 mm =17.91(10)^{-3}  m is the diameter of a dime

D is the diameter of the Sun

x_{sun-pinhole}=150,000,000 km=1.5(10)^{11}  m is the distance between the Sun and the pinhole

x_{sunball-pinhole}=100 d=1.791 m is the amount of dimes that fit in a distance between the sunball and the pinhole

Finding D:

D=\frac{d}{x_{sunball-pinhole}}x_{sun-pinhole}

D=\frac{17.91(10)^{-3}  m}{1.791 m} 1.5(10)^{11}  m

D=1.5(10)^{9}  m This is roughly the diameter of the Sun

Now, the distance between the Earth and the Sun is one astronomical unit (1 AU), which is equal to:

1 AU=149,597,870,700 m

So, we have to divide this distance between D in order to find how many suns could it fit in this distance:

\frac{149,597,870,700 m}{1.5(10)^{9}  m}=99.73 suns \approx 100 suns

8 0
3 years ago
An elevator (mass 4125 kg) is to be designed so that the maximum acceleration is 0.0400g.
fiasKO [112]
The way to do this is very easy so do 4125 x 2 = ? then the ? will be times by 2 again after the answer to both of those is your answer!!!
8 0
3 years ago
Other questions:
  • A spider is crawling on a wall. First it crawls 1 meter up, then 1 meter to the left, and then 1 meter down. what is its total d
    11·2 answers
  • A car with two people traveling down the road has a mass of 100 kg and a velocity of 5 m/s. The car pulls over and picks up two
    11·2 answers
  • What is modulus of elasticity for shearing stress and strain called?
    13·1 answer
  • In an extreme marathon, participants run a total of 100km; world-class athletes maintain a pace of 15 km/h. how many 230 Calorie
    12·2 answers
  • How are particles in different state of matter?
    14·2 answers
  • The formation of volcanos and mountain ranges can be explained by the theroy of _____
    11·1 answer
  • Find the refractive index of a medium<br> having a velocity of 1.5 x 10^8*
    8·1 answer
  • WILL MARK BRAINLIEST
    8·2 answers
  • If a 20.0 g object at a temperature of 35.0∘C has a specific heat of 2.89Jg∘C, and it releases 450. J into the atmosphere, what
    9·2 answers
  • Horizontal displacement?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!