The normal force decreases, this is the frictional force. It will be counteracted by the force which accelerates the brick to slide downward opposite to the end where the board is raised. As the angle increases the force acting upon the brick opposite to the normal force will decrease.
(B) 1.00 m
Explanation:
Since the meter stick is traveling with Jill, it will have the same speed as she does so relative to Jill, the meter stick is stationary so its length remains 1.00 m as measured by her.
27.5 because of you divide the 55miles with the time you get your velocity which is the speed.
Answer:
4.4 m
Explanation:
We are told the light from his flashlight, 1.3 m above the water level. Thus; h1 = 1.3m
Also,we are told that the light shone 2.5 m from his foot at the edge of the pool. Thus, L1 = 2.5 m
Angle of incidence θ1 is given by;
tan θ1 = L1/h1
tan θ1 = 2.5/1.3
tan θ1 = 1.9231
θ1 = tan^(-1) 1.9231
θ1 = 62.53°
Using Snell's law, we can find the angle of refraction from;
Sin θ2 = (η_air/η_water) Sin θ1
Where;
η_air is Refractive index of air = 1
η_water is Refractive index of water = 1.33
Thus;
Sin θ2 = (1/1.33) × sin 62.53°
Sin θ2 = 0.6671
θ2 = sin^(-1) 0.6671
θ2 = 41.84°
We want to find where the spot of light hit the bottom of the pool if the pool is 2.1 m deep. Thus, h2 = 2.1 m
Now, the spot can be found from;
L = L1 + L2
Where L2 = (h2) tan θ2
L = 2.5 + 2.1 tan 48.84
L = 2.5 + (2.1 × 0.8954)
L ≈ 4.4 m