1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Y_Kistochka [10]
3 years ago
13

what will happen when two wave pulses that are the same size approach one another from opposite directions?

Physics
1 answer:
xenn [34]3 years ago
5 0
When two or more waves meet, they interact with each other. The interaction of waves with other waves is called wave interference. Wave interference may occur when two waves that are traveling in opposite directions meet. The two waves pass through each other, and this affects their amplitude.
You might be interested in
The temperature of a substance is _________
emmainna [20.7K]
The answer is B.
Temperature is just another term for the average kinetic energy of a substance.
6 0
3 years ago
An advertisement for an all-terrain vehicle (ATV) claims that the ATV can climb inclined slopes of 35°. What is the minimum coef
navik [9.2K]

An advertisement for an all-terrain vehicle (ATV) claims that the ATV can climb inclined slopes of 35°. The minimum coefficient of static friction needed for this claim to be possible is 0.7

In an inclined plane, the coefficient of static friction is the angle at which an object slide over another.  

As the angle rises, the gravitational force component surpasses the static friction force, as such, the object begins to slide.

Using the Newton second law;

\sum F_x = \sum F_y = 0

\mathbf{mg sin \theta -f_s= N-mgcos \theta = 0 }

  • So; On the L.H.S

\mathbf{mg sin \theta =f_s}

\mathbf{mg sin \theta =\mu_s N}

  • On the R.H.S

N = mg cos θ

Equating both force component together, we have:

\mathbf{mg sin \theta =\mu_s \ mg \ cos \theta}

\mathbf{sin \theta =\mu_s \ \ cos \theta}

\mathbf{\mu_s = \dfrac{sin \theta }{ cos \theta}}

From trigonometry rule:

\mathbf{tan \theta= \dfrac{sin \theta }{ cos \theta}}

∴

\mathbf{\mu_s =\tan \theta}}

\mathbf{\mu_s =\tan 35^0}}

\mathbf{\mu_s = 0.700}}

Therefore, we can conclude that the minimum coefficient of static friction needed for this claim to be possible is 0.7

Learn more about static friction here:

brainly.com/question/24882156?referrer=searchResults

8 0
3 years ago
What is the mechanical energy of a 500kg rollercoaster car moving with a speed of 3m/s at the top hill that is 30m high
koban [17]

K.E = 1/2*m*v^2 = 1/2(500)(3)^2 = 2250 J

m*g*h = 500(9.8)(30) = 147000 J

2250 + 147000 = 149250

4 0
3 years ago
Light shined through a single slit will produce a diffraction pattern. Green light (565 nm) is shined on a slit with width 0.210
kondor19780726 [428]

Answer:(a)9.685 mm

(b)4.184 mm

Explanation:

Given

Wavelength of light (\lambda )=565nm \approx 565\times 10^{-9}m

Width of slit(b)=0.210

(a)Width of central maximum located 1.80m from slit

=\frac{2\lambda L}{b}

=\frac{2\times 565\times 10^{-9}\times 1.8}{0.210\times 10^{-3}}

=9.685 mm

(b)Width of the first order bright fringe

Y_1=\frac{\lambda \times L}{b}

Y_1=\frac{565\times 10^{-9}\times 1.8}{0.210\times 10^{-3}}

Y_1=4.84mm

5 0
3 years ago
Two identical cars A and B are at rest on a loading dock with brakes released. Car C, of a slightly different style but of the s
Nadusha1986 [10]

Answer:

Explanation:

Let the velocity after first collision be v₁ and v₂ of car A and B . car A will bounce back .

velocity of approach = 1.5 - 0 = 1.5

velocity of separation = v₁ + v₂

coefficient of restitution = velocity of separation / velocity of approach

.8 = v₁ + v₂ / 1.5

v₁ + v₂ = 1.2

applying law of conservation of momentum

m x 1.5 + 0 = mv₂ - mv₁

1.5 = v₂ - v₁

adding two equation

2 v ₂= 2.7

v₂ = 1.35 m /s

v₁ = - .15 m / s

During second collision , B will collide with stationary A . Same process will apply in this case also. Let velocity of B and A after collision be v₃ and v₄.

For second collision ,

coefficient of restitution = velocity of separation / velocity of approach

.5 = v₃ + v₄ / 1.35

v₃ + v₄ = .675

applying law of conservation of momentum

m x 1.35 + 0 = mv₄ - mv₃

1.35 = v₄ - v₃

adding two equation

2 v ₄= 2.025

v₄ = 1.0125 m /s

v₃ = - 0 .3375  m / s

3 0
3 years ago
Other questions:
  • lens is to be used to allow this eye to clearly focus on objects 25 cm in front of it. What should be the focal length of this l
    9·1 answer
  • Two wheels are identical but wheel b is spinning with twice the angular speed of wheel
    8·1 answer
  • The electric field between square the plates of a parallel-plate capacitor has magnitude E. The potential across the plates is m
    6·1 answer
  • Consider an unknown charge that is released from rest at a particular location in an electric field so that it has some initial
    12·1 answer
  • While trees are not the largest level in the pyramid of numbers, they are still the base for both the pyramids of biomass and py
    11·1 answer
  • How much net force must be applied to a 250 kg boat to cause an acceleration<br> of +1.8 m/s/s?
    11·1 answer
  • What is the formula of the compound formed when Beryllium reacts with the sulfate ion?
    14·1 answer
  • Based on the solubility graph. what effect does increasing the temperature of these substances have in their solubility? does th
    7·1 answer
  • What is the block of 10 columns in the
    7·1 answer
  • Consider the previous question. which has the greater acceleration: the bug or the windshield?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!