46.6666 that is the mass number
Explanation:
14 divided 3.0
Answer:

Explanation:
As we know that when electron moved in electric field then work done by electric field must be equal to the change in kinetic energy of the electron
So here we have to find the work done by electric field on moving electron
So we have



now the distance moved by the electron is given as

so we have



now we have to convert it into keV units
so we have


Answer:
Pitcher is accelerating the ball at 30 times of acceleration due to gravity = 294 m/s²
Explanation:
Force applied on baseball = 30 times weight of the ball.
Weight of ball = mg, where m is the mass of ball and g is acceleration due to gravity value.
We have force applied is also equal to product of mass and acceleration.
F = ma = 30 x mg
a = 30g
So, pitcher is accelerating the ball at 30 times of acceleration due to gravity = 294 m/s²
Answer:
The value to be reported is 5.48V
Explanation:
The RMS (root mean square) is defined as the value of voltage that will produce the same heating effect, or power dissipation, in circuit, as this AC voltage.
The RMS voltage is also called effective voltage because it is just as effective as DC voltage in providing power to an element.
It is expressed as
= 
where Vm is the maximum or peak value of the voltage
In calculating the RMS of the voltage , we simply divide the peak voltage by square root of 2 (√2)
= 
= 
= 5.48 V
Answer:
the bowling ball, because it has more mass and therefore more inertia
Explanation:
As per law of inertia we know that if an object is having more inertia then it is difficult to change state of motion.
Inertia is the property of mass of an object which always resist to change the state of motion of the object.
If an object has more inertia then it is more difficult to change the state of motion.
Now we know that we have one bowling ball and one basket ball, since bowling ball is having more mass then it must have more inertia so it is difficult to start the motion in bowling ball.
So correct answer will be
the bowling ball, because it has more mass and therefore more inertia