To find work, you use the equation: W = Force X Distance X Cos (0 degrees)
Following the Law of Conservation of Energy, energy cannot be destroyed nor created.
So you would do 75 N x 10m x Cos (0 degrees)= 750 J
I think the correct answer is
D) Ted associated being asked a question with embarrassment.
Glad I could help, and good luck!
AnonymousGiantsFan
Answer:
a. λ = 647.2 nm
b. I₀ 9.36 x 10⁻⁵
Explanation:
Given:
β = 56.0 rad , θ = 3.09 ° , γ = 0.170 mm = 0.170 x 10⁻³ m
a.
The wavelength of the radiation can be find using
β = 2 π / γ * sin θ
λ = [ 2π * γ * sin θ ] / β
λ = [ 2π * 0.107 x 10⁻³m * sin (3.09°) ] / 56.0 rad
λ = 647.14 x 10⁻⁹ m ⇒ λ = 647.2 nm
b.
The intensity of the central maximum I₀
I = I₀ (4 / β² ) * sin ( β / 2)²
I = I₀ (4 / 56.0²) * [ sin (56.0 /2) ]²
I = I₀ 9.36 x 10⁻⁵
Answer:
speed = distance/time
Explanation:
speed = 150/30
speed =5m/s
you were running fast .....5m/s is a good speed
Answer:

Explanation:
As we know that when electron moved in electric field then work done by electric field must be equal to the change in kinetic energy of the electron
So here we have to find the work done by electric field on moving electron
So we have



now the distance moved by the electron is given as

so we have



now we have to convert it into keV units
so we have

