The force required to pull the two hemispheres apart is 4.2×10⁴ N and 29 number of horses are needed to pull these hemispheres apart.
<h3>What's the expression of force in terms of pressure?</h3>
- Mathematically, force = pressure/area
- Total area of the two hemispheres = 4π×(0.43)²= 2.3 m²
- Total pressure on the hemispheres= 15 milibar (directed inward) + 940 milibar (atmospheric pressure) = 955 milibar
=955×100 N/m²= 9.55×10⁴ N/m²
- Force on the hemispheres= 9.55×10⁴/2.3 = 4.2×10⁴ N
<h3>What's the minimum number of horses required to get 4.2×10⁴ N of force, if each horse can pull with a force of 1450N?</h3>
No. of horses required to separate the hemispheres = 4.2×10⁴/1450 = 29
Thus, we can conclude that the 29 horses are needed to pull the two hemispheres with a force of 4.2×10⁴ N.
Learn more about the pressure and force here:
brainly.com/question/8033367
#SPJ1
Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, and is the primary interaction occurring in ionic compounds.A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding.
Answer:
False
Explanation:
According to the big bang theory, matter was an infinitely small and very high density point which at one point exploded and expanded in all directions, creating what we know as our Universe, which also includes space and time . This happened about 13.8 billion years ago. Theoretical physicists have managed to reconstruct this chronology of events from 1/100 of a second after the Big Bang. After the explosion, while the Universe expanded, it cooled sufficiently and the first subatomic particles were formed: Electrons, Positrons, Mesons, Barions, Neutrinos, Photons among others. Today more than 90 particles are known. This theory solves many unknowns and is very well received by the scientific community, however there is still much to solve, for example, one of the great unsolved scientific problems in the expanding Universe model is whether the Universe is open or closed.
An attempt to solve this problem is to determine if the average density of matter in the Universe is greater than the critical value in Friedmann's model. The mass of a galaxy can be measured by observing the movement of its stars; multiplying the mass of each galaxy by the number of galaxies, it is seen that the density is only 5 to 10% of the critical value.