The highest energy occupied molecular orbital in the C-C bond of the C₂ molecule is 2pπ orbitals.
<h3>What is Molecular Orbital Theory?</h3>
According to this theory,
- Molecular orbitals are formed by intermixing of atomic orbitals of two or more atoms having comparable energies
- The number of molecular orbitals formed is equal to the number of atomic orbitals combined.
- The shape of molecular orbitals formed depends on the type of atomic orbitals combined
- Only atomic orbitals having comparable energies and the same orientation can intermix
- Bonding M.O. is formed by the additive effect of atomic orbitals and thus, has lower energy and high stability.
- Antibonding M.O. is formed by the subtractive effect of atomic orbitals and thus, has higher energy and low stability.
- Bonding M.O. is represented by
while Antibonding M.O. is represented by 
Molecular Orbital Diagram of C₂
Learn more about Molecular Orbital Theory:
brainly.com/question/17371976
#SPJ4
In every 100g of that compund there is 50.84 g of C, 8.53 g H and (100-59.37) g = 40.63 g of O.
Step 1: Convert each element's mass in moles. To do that we need to divide each element's mass by their respective molar mass.
For Carbon.

For Hydrogen.

For Oxygen.

Step 2: Divide each of the numbers by the smallest number.
For Carbon.

For Hydrogen.

For Oxygen.

Step 3: So the empirical formula will be.
But using decimal will be messy. So we multiply the numbers by 3. The right empirical formula will be.
Answer:
1 not
2 not
3 not
4 balanced
5 not
6 not
7 balanced
Explanation:
the amount of elements must be equal in the reactant and products
Answer:
what are the roles of minerals in maintaning homeostasis?
3
One from fe
And two from cl2