Answer:
34.28 L ( 1.5*22.4 L)
Explanation:
Calculation of the moles of aluminum as:-
Mass = 55 g
Molar mass of aluminum = 26.981539 g/mol
The formula for the calculation of moles is shown below:
Thus,

According to the reaction:-

4 moles of aluminum react with 3 moles of oxygen gas
1 mole of aluminum react with
moles of oxygen gas
2.0384 moles of aluminum react with
moles of oxygen gas
Moles of oxygen gas = 1.5288 moles
At STP,
Pressure = 1 atm
Temperature = 273.15 K
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
1 atm × V = 1.5288 mol × 0.0821 L.atm/K.mol × 273.15 K
⇒V = 34.28 L ( 1.5*22.4 L)
Explanation:
It is often desirable to determine the mass percent of elements in a given compound.
To determine the mass percent of elements:
- Evaluate the formula mass of the compound. This is done by summing the atomic masses of the atoms in the compound together.
- The mass percentage is determined by pacing the mass contribution of each element or group to the formula mass of the compound and multiply by 100.
Learn more:
Percent by mass brainly.com/question/5544078
#learnwithBrainly
We add up all the various atoms:
C: 55
H: 72
Mg: 1
N: 4
O: 5
55 + 72 + 1 + 4 + 5
= 137
The answer is B.
a. 381.27 m/s
b. the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triiodide
<h3>Further explanation</h3>
Given
T = 100 + 273 = 373 K
Required
a. the gas speedi
b. The rate of effusion comparison
Solution
a.
Average velocities of gases can be expressed as root-mean-square averages. (V rms)

R = gas constant, T = temperature, Mm = molar mass of the gas particles
From the question
R = 8,314 J / mol K
T = temperature
Mm = molar mass, kg / mol
Molar mass of Sulfur dioxide = 64 g/mol = 0.064 kg/mol

b. the effusion rates of two gases = the square root of the inverse of their molar masses:

M₁ = molar mass sulfur dioxide = 64
M₂ = molar mass nitrogen triodide = 395

the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triodide