Answer:
Momentum is define as the product of the mass and velocity of a body. It is measured in Kgm/s.
Explanation:
Momentum is the product of mass and velocity of an object. When an object or a body of mass 'm' is moving with velocity 'v', then its momentum can be determined as;
momentum (P) = mass × velocity
i.e P = m × v
= mv
It is measured in Kgm/s.
The change in momentum of a body is referred to as its impulse (Ft).
ΔP = m(v - u) = Ft
Where: P is the momentum of the object, m is its mass, v is its final velocity, u is the initial velocity, F is the force and t is the time in which the force acts.
Silver is a very good conductor, this means its resistivity is very low (from table, we can check the precise value, which is

).
Pure water, instead, is a very bad conductor, this means its resistivity is very high, of order of

(

). Even without knowing the precise value of the pure water resistivity, we can estimate the ratio between the pure water resistivity and the silver resistivity by comparing the two orders of magnitude:

Therefore, we can say that the correct answer is
Answer:
Magnesium and Bromine
Explanation:
I just took the test, and Magnesium has 7 electrons and Bromine has 2 valance electrons making the transfer a lot easier. In the first choice, Krypton already has 8 valance electrons therefore it cannot transfer or accept any more which rules it out as a possible answer. Calcium has 2 valance electrons and Potassium has 1 meaning it couldn't make a full shell of 8 and cannot make a ionic bond. Iodine has 7 electrons as well as Chlorine which wouldn't be the answer because it would have more than 8 valance electrons.
The electrostatic force between two charges is inversely
proportional to the square of the distance between them.
So if you want to multiply the force by, say, ' Q ',
you need to multiply the distance by ( 1 / √Q ) .
We want to multiply the force by 16, so we need to
multiply the distance by ( 1 / √16 ) = ( 1 / 4 ) .
The distance should be changed to 1/4 of what it is now.
Some sort of magnetic metal
Metals are heavier per cubic unit than other materials such as air or water, and also are much more magnetic than other materials