Answer:
The answer is choice A.
Explanation:
Assuming you are in a situation with a gravitational field. You can divide the motion of the bullet into two components. One horizontal and the other in the vertical.
Answer:3,600 Newtons
Explanation:
The net force acting on the car is
3×10^3squared
Newtons.
Force is defined as the product of the mass of the body and its aaceleration,⇒F=ma
Substituting the above given values we get,F=(1500kg) (2.0m /s^2 squared)=3000 N=3×10^3 squared N.
N=newtons
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.
The correct answer is Model A shows the three-dimensional shape of the molecule, but Model B does not.
Explanation:
Model A and B show the structure of a molecule. In the case of model A, the structure is represented through the use of three-dimensional shapes, while in model B the structure is represented using the letters of each element and showing how each element is connected to others.
In this context, one feature that makes model A better is that this represents the molecule using a 3D model, which is better to understand how the molecule looks like and what is its structure. Moreover, both models are alike because they show the number of atoms of each element, although model A does not show the types of elements.