1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
taurus [48]
3 years ago
14

A steam power plant operates on an ideal Rankine cycle with two stages of reheat and has a net power output of 120 MW. Steam ent

ers all three stages of the turbine at 500°C. The maximum pressure in the cycle is 15 MPa, and the minimum pressure is 5 kPa. Steam is reheated at 5 MPa the first time and at 1 MPa the second time. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the thermal efficiency of the cycle and (b) the mass flow rate of the steam.

Engineering
1 answer:
uysha [10]3 years ago
7 0

Answer:

a) 40.6%

b)72.19kg/s

Explanation:

The Rankine cycle with two reheat stages has 9 stages in total.

The maximum pressure will be at the first inlet stage of the HP turbine which is stage 3. The minimum pressure will be the exit stage of the condenser because the condenser operates under vacuum pressure which is stage 1.

The following assumptions can be made:

1 - Each component in the cycle is analyzed as an open system operating at steady-state.

  2 - All of the processes are internally reversible.

  3 - The turbine and pump operate adiabatically and are internally reversible, so they are also isentropic.

   4 - Condensate exits the condenser as saturated liquid.

  5 - The effluent from the HP turbine is a saturated vapor.

  6 - No shaft work crosses the system boundary of the boiler or condenser.

   7 - Changes in kinetic and potential energies are negligible

a) The thermal efficiency of the cycle is defined as the work of the cycle divided by the total heat input to the system. The stages that have heat input is stages 2-3, 4-5, 6-7.

For stage 2:

s₁=s₂ assuming isentropic

s_1=0.4762 @ P_1=15MPa

enthalpy will be a compressed liquid so after interpolation

h_2=97.93+(0.4762-0.2932)((180.77-97.93)/(0.5666-0.2932))=153.38kJ/kg

For stage 3:

Superheated steam @ T=500⁰C and P=15MPa

h_3=3310.8kJ/kg

Stage 4:

superheated vapor

P=5MPa

s₃=s₄=6.3480 kJ/kg, we must use interpolation to find h₄

h_4=2925.7-(6.348-6.2111)((3069.3-2925.7)/(6.4516-6.2111))=3007.44kJ/kg

Stage 5:

Superheated steam @ T=500⁰C and P₄=P₅=5 MPa

h_5=3434.7kJ/kg

Stage 6:

Superheated steam at P₆= 1MPa

s₅=s₆

s_6=6.9781

We find h₆ using interpolation from the steam tables:

h_6=2943.1-(6.9781-6.9265)((3051.6-2943.1)/(7.1246-6.9265))=2970.67kJ/kg

Stage 7:

P₇=P₆=1MPa

T=500⁰C superheated steam

h_7=3479.1kJ/kg

The heat into the cycle is:

=(h_3-h_2)+(h_5-h_4)+(h_7-h_6)

=(3310.8-153.38)+(3434.7-3007.44)+(3479.1-2970.67)=4108.74kJ/kg

We can determine the work out by the condenser from stage 9 to stage 1:

Stage 1:

saturated liquid P=5kPa

h_1=137.75kJ/kg

Stage 9:

We assume that its a saturated liquid with quality of 1 at 5kPa and

s₇=s₉ and after interpolation

h_9=2568.53kj/kgK

Qout = [/tex]2568.53-137.75=2430.79kJ/kg[/tex]

The thermal efficiency can be written in terms of qin and qout:

n=1-(q_o/q_i)=1-2430.79/4093.11=0.4061

Efficiency of 40.61%

b)

The mass flow rate can be calculated from the Wnet:

W_n=W_t-W_p

Work of the turbines minus the work of the pumps:

W_n=m((h_3-h_4)+(h_5-h_6)+(h_7-h_9)-(h_1-h_2)

120000=m(1662.33)

m=72.19

mass flow rate of steam is 72.19 kg/s

You might be interested in
An aluminum metal rod is heated to 300oC and, upon equilibration at this temperature, it features a diameter of 25 mm. If a tens
Natalka [10]

Answer:

It will results in mechanical hardening.

5 0
3 years ago
Read 2 more answers
Question: 10 of 15
Anvisha [2.4K]

Answer:

Leg length

Explanation:

The distances from the root to the edges of the legs (toes) and the height of the crown are basic measurements.

3 0
3 years ago
What is the purpose of O-ring and valve seals in a cylinder head?
Andrews [41]

Answer:

its to show the shape is flat and only flat at the botom and top and you can set it up ther way and it wlll still look the same.

Explanation:

8 0
3 years ago
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
abruzzese [7]

Answer:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The net work per cycle is 845.88 kJ/kg

The power developed in horsepower ≈ 45374 hP

Explanation:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The dimension of the cylinder bore diameter = 3.7 in. = 0.09398 m

Stroke length = 3.4 in. = 0.08636 m.

The volume of the cylinder v₁= 0.08636 ×(0.09398²)/4 = 5.99×10⁻⁴ m³

The clearance volume = 16% of cylinder volume = 0.16×5.99×10⁻⁴ m³

The clearance volume, v₂  = 9.59 × 10⁻⁵ m³

p₁ = 14.5 lbf/in.² = 99973.981 Pa

T₁ = 60 F = 288.706 K

\dfrac{T_{2}}{T_{1}} = \left (\dfrac{v_{1}}{v_{2}}  \right )^{K-1}

Otto cycle T-S diagram

T₂ = 288.706*6.25^{0.393} = 592.984 K

The maximum temperature = T₃ = 5200 R = 2888.89 K

\dfrac{T_{3}}{T_{4}} = \left (\dfrac{v_{4}}{v_{3}}  \right )^{K-1}

T₄ = 2888.89 / 6.25^{0.393} = 1406.5 K

Work done, W = c_v×(T₃ - T₂) - c_v×(T₄ - T₁)

0.718×(2888.89  - 592.984) - 0.718×(1406.5 - 288.706) = 845.88 kJ/kg

The power developed in an Otto cycle = W×Cycle per second

= 845.88 × 2400 / 60  = 33,835.377 kW = 45373.99 ≈ 45374 hP.

8 0
4 years ago
A tool chest has 950 N weight that acts through the midpoint of the chest. The chest is supported by feet at A and rollers at B.
Mazyrski [523]

Answer:

P > 142.5 N  (→)

the motion sliding

Explanation:

Given

W = 959 N

μs = 0.3

If we apply

∑ Fy = 0 (+↑)

Ay + By = W

If  Ay = By

2*By = W

By = W / 2

By = 950 N / 2

By = 475 N (↑)

Then  we can get F (the force of friction) as follows

F = μs*N = μs*By

F = 0.3*475 N

F = 142.5 N (←)

we can apply

P - F  > 0

P  > 142.5 N (→)

the motion sliding

6 0
3 years ago
Other questions:
  • In a study comparing banks in Germany and Great Britain, a sample of 145 matched pairs of banks was formed. Each pair contained
    12·1 answer
  • Technician A says that you don’t need to use an exhaust extraction system when working on vehicles equipped with a catalytic con
    9·1 answer
  • An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere wherein t
    6·1 answer
  • Check the answer that best describes the relationship between f(x) and x. (For example if f(x) is Θ(x) check that as your answer
    12·1 answer
  • Someone please help me with this I’m stuck on it ?!i don’t have a lot of time
    12·1 answer
  • the frequencies 10, 12, 23 and 45 Hz. (a) What is the minimum sampling rate required to avoid aliasing? (b) If you sample at 40
    13·1 answer
  • Using the technique of bitwise ANDing, find the IP address of the network # (this could be a network or subnet) on which the mac
    14·1 answer
  • 3. A steel pipe of outside diameter 20 mm and thickness 3 mm is
    14·1 answer
  • Risks are Not Perceived Differently from What is Happening<br> False<br> True
    14·1 answer
  • What are the inputs and outputs of a sailboat?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!