1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
taurus [48]
3 years ago
14

A steam power plant operates on an ideal Rankine cycle with two stages of reheat and has a net power output of 120 MW. Steam ent

ers all three stages of the turbine at 500°C. The maximum pressure in the cycle is 15 MPa, and the minimum pressure is 5 kPa. Steam is reheated at 5 MPa the first time and at 1 MPa the second time. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the thermal efficiency of the cycle and (b) the mass flow rate of the steam.

Engineering
1 answer:
uysha [10]3 years ago
7 0

Answer:

a) 40.6%

b)72.19kg/s

Explanation:

The Rankine cycle with two reheat stages has 9 stages in total.

The maximum pressure will be at the first inlet stage of the HP turbine which is stage 3. The minimum pressure will be the exit stage of the condenser because the condenser operates under vacuum pressure which is stage 1.

The following assumptions can be made:

1 - Each component in the cycle is analyzed as an open system operating at steady-state.

  2 - All of the processes are internally reversible.

  3 - The turbine and pump operate adiabatically and are internally reversible, so they are also isentropic.

   4 - Condensate exits the condenser as saturated liquid.

  5 - The effluent from the HP turbine is a saturated vapor.

  6 - No shaft work crosses the system boundary of the boiler or condenser.

   7 - Changes in kinetic and potential energies are negligible

a) The thermal efficiency of the cycle is defined as the work of the cycle divided by the total heat input to the system. The stages that have heat input is stages 2-3, 4-5, 6-7.

For stage 2:

s₁=s₂ assuming isentropic

s_1=0.4762 @ P_1=15MPa

enthalpy will be a compressed liquid so after interpolation

h_2=97.93+(0.4762-0.2932)((180.77-97.93)/(0.5666-0.2932))=153.38kJ/kg

For stage 3:

Superheated steam @ T=500⁰C and P=15MPa

h_3=3310.8kJ/kg

Stage 4:

superheated vapor

P=5MPa

s₃=s₄=6.3480 kJ/kg, we must use interpolation to find h₄

h_4=2925.7-(6.348-6.2111)((3069.3-2925.7)/(6.4516-6.2111))=3007.44kJ/kg

Stage 5:

Superheated steam @ T=500⁰C and P₄=P₅=5 MPa

h_5=3434.7kJ/kg

Stage 6:

Superheated steam at P₆= 1MPa

s₅=s₆

s_6=6.9781

We find h₆ using interpolation from the steam tables:

h_6=2943.1-(6.9781-6.9265)((3051.6-2943.1)/(7.1246-6.9265))=2970.67kJ/kg

Stage 7:

P₇=P₆=1MPa

T=500⁰C superheated steam

h_7=3479.1kJ/kg

The heat into the cycle is:

=(h_3-h_2)+(h_5-h_4)+(h_7-h_6)

=(3310.8-153.38)+(3434.7-3007.44)+(3479.1-2970.67)=4108.74kJ/kg

We can determine the work out by the condenser from stage 9 to stage 1:

Stage 1:

saturated liquid P=5kPa

h_1=137.75kJ/kg

Stage 9:

We assume that its a saturated liquid with quality of 1 at 5kPa and

s₇=s₉ and after interpolation

h_9=2568.53kj/kgK

Qout = [/tex]2568.53-137.75=2430.79kJ/kg[/tex]

The thermal efficiency can be written in terms of qin and qout:

n=1-(q_o/q_i)=1-2430.79/4093.11=0.4061

Efficiency of 40.61%

b)

The mass flow rate can be calculated from the Wnet:

W_n=W_t-W_p

Work of the turbines minus the work of the pumps:

W_n=m((h_3-h_4)+(h_5-h_6)+(h_7-h_9)-(h_1-h_2)

120000=m(1662.33)

m=72.19

mass flow rate of steam is 72.19 kg/s

You might be interested in
Which option distinguishes the members of a software deployment process team most likely involved in the following scenario?
Alchen [17]

Answer:

A local bank, with several branches in three cities, requests changes to its mortgage calculation software.

5 0
3 years ago
One gram of Strontium-90 has an activity of 5.3 terabecquerels (TBq), what will be the activity of 1 microgram?
noname [10]

1 micro gram of Strontium-90 has an activity of

0.0000053 terabecquerels (TBq),

Explanation:

Given information denotes that .,one gram of Strontium-90 has an activity of 5.3 terabecquerels (TBq)

the activity of 1 micro gram is

1 gram = 1,000,000 micro gram has activities of 5.3 terabecquerels

therefore 1 micro gram has the activity of (5.3 ÷  1,000,000 = 0.0000053 )

= (5.3 ÷  1,000,000 = 0.0000053 )

Hence ., 1 micro gram of Strontium-90 has an activity of

0.0000053 terabecquerels (TBq),

8 0
3 years ago
Discuss the organizational system that you believe would be the most effective for the safety officer in a medium-sized (100-200
marin [14]

Answer:

A safety manager is a person who designs and maintains the safety elements at workplace. A balance should be required for production and the job in providing work environment. As a safety officer in a medium sized manufacturing facility the following organizational system can be designed and maintained:

  • Maintaining a workplace as per the guidelines by Occupational safety and health association. The rules and regulation should be such that maintains the manufacturing facilities.  
  • For warning to workers proper labelling, floor mapping, signs, posters should be used.  
  • Procurement and usage of safe tools.  
  • A guideline that describes safety standard and precautionary measures should be available to the workers. They should be aware about all the steps that needs to be taken in crisis.  
  • Ensuring that the workers have enough training safety and health or accident prevention.  
  • Identify and eliminate the hazardous elements from the workplace.  
  • A strict action should be taken against the worker in case of violation of rules and not adhering with guidelines.

3 0
3 years ago
1. Consider a city of 10 square kilometers. A macro cellular system design divides the city up into square cells of 1 square kil
kakasveta [241]

Answer:

a) n = 1000\,users, b)\Delta t_{min} = \frac{1}{30}\,h, \Delta t_{max} = \frac{\sqrt{2} }{30}\,h, \Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h, c) n = 10000000\,users, \Delta t_{min} = \frac{1}{3000}\,h, \Delta t_{max} = \frac{\sqrt{2} }{3000}\,h, \Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h

Explanation:

a) The total number of users that can be accomodated in the system is:

n = \frac{10\,km^{2}}{1\,\frac{km^{2}}{cell} }\cdot (100\,\frac{users}{cell} )

n = 1000\,users

b) The length of the side of each cell is:

l = \sqrt{1\,km^{2}}

l = 1\,km

Minimum time for traversing a cell is:

\Delta t_{min} = \frac{l}{v}

\Delta t_{min} = \frac{1\,km}{30\,\frac{km}{h} }

\Delta t_{min} = \frac{1}{30}\,h

The maximum time for traversing a cell is:

\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}

\Delta t_{max} = \frac{\sqrt{2} }{30}\,h

The approximate time is giving by the average of minimum and maximum times:

\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}

\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h

c) The total number of users that can be accomodated in the system is:

n = \frac{10\times 10^{6}\,m^{2}}{100\,m^{2}}\cdot (100\,\frac{users}{cell} )

n = 10000000\,users

The length of each side of the cell is:

l = \sqrt{100\,m^{2}}

l = 10\,m

Minimum time for traversing a cell is:

\Delta t_{min} = \frac{l}{v}

\Delta t_{min} = \frac{0.01\,km}{30\,\frac{km}{h} }

\Delta t_{min} = \frac{1}{3000}\,h

The maximum time for traversing a cell is:

\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}

\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h

The approximate time is giving by the average of minimum and maximum times:

\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}

\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h

8 0
3 years ago
Which of the following is true about modern hydraulic lifts?
kaheart [24]

The modern hydraulic lifts make use of biodegradable fluid to transmit hydraulic power

<em>Question: The options are left out in the question. The details and facts about the modern hydraulic lift are presented here</em>

<em />

Details about the modern hydraulic lifts include;

The development of the  modern hydraulic occurred in the Industrial Revolution to perform task done previously by steam powered elevators  

The power of the hydraulic lift come from the hydraulic cylinder known as the actuator, which in turn is powered by pressurized hydraulic fluid such as oil

The hydraulic fluid is pushed by a piston rod through which energy is capable of being transferred, such that the applied force is multiplied, to provide more power for lifting

<u>Facts about the modern hydraulic lifts include;</u>

  • The dry motor in the modern hydraulic lift is more efficient and consumes 20% less energy
  • It comprises of valves that are controlled electronically such that the response is much rapid and the energy consumption is reduced by a further 20%
  • The cars used in the modern lift are lighter, as well as the slings, which reduces the power usage by 20%
  • It makes use of chemicals which are environmentally friendly as hydraulic fluid
  • The flash point of the fluid used is higher, as well as it posses 50% lower compressibility as well elasticity

Learn more here:

brainly.com/question/16942803

6 0
2 years ago
Other questions:
  • Problem 3: Soil Classification using the AASHTO and USCS Systems
    10·1 answer
  • Buying shop supplies from the shop owner to work on your own car at home is an ethical practice.
    14·1 answer
  • How are eras different from decades?
    5·1 answer
  • Only an outer panel is being replaced. Technician A says that removing the spot welds by drilling through both panels allows the
    11·1 answer
  • Should you ever grab a tool with expose wiring
    13·2 answers
  • 4 main causes of erosion
    12·1 answer
  • Any help is appreciated.
    7·1 answer
  • What did Brother Guy say when he was showing all the pictures of scientists? (the basic point he was making)
    6·2 answers
  • THIS IS NOT AN ACADEMIC QUESTION, but who was the bitter of 1987 in FNAF?
    6·2 answers
  • Please help me with this question
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!