<h3>Answer:</h3>
53 fahrenheit
<h3>Explanation:</h3>
Temperature is a measure of thermal energy. It goes down when thermal energy decreases. Of your choices, the temperature lower than 62 °F is 53 °F.
Answer:
In 1 mol of Pb₃(PO₄)₄ occupies 1001.48 grams
Explanation:
This compound is the lead (IV) phosphate.
Grams that occupy 1 mole, means the molar mass of the compound
Pb = 207.2 .3 = 621.6 g/m
P = 30.97 .4 = 123.88 g/m
O = (16 . 4) . 4 = 256 g/m
621.6 g/m + 123.88 g/m + 256 g/m = 1001.48 g/m
Answer: when reactants and products are gases at STP.
Justification:
1) STP stands for standard temperature (0°) and pressure (1 atm).
2) According to the kinetic molecular theory of the gases, and as per Avogadro's principle, equal volumes of gases, at the same temperature and pressure, have the same number of molecules.
3) Since the coefficients in a balanced chemical equation represent number of moles, when reactants and products are gases at the same temperature and pressure, the mole ratios are the same that the volume ratios, and then the coefficients of the chemical equation represent the volume ratios.
<u><em>I believe the answer you are looking for is position 4 </em></u>, because the northern face of the hemisphere is facing away from the sun not getting
to much heat nor daylight therefore its cold making it winter fully in option 4.
Just a tip option 3 looks like its facing back but half of it is still shown to the sun.
Answer:
Solution:-
The gas is in the standard temperature and pressure condition i.e. at S.T.P
Therefore,
V
i
=22.4dm
3
V
f
=?
As given that the expansion is isothermal and reversible
∴ΔU=0
Now from first law of thermodynamics,
ΔU=q+w
∵ΔU=0
∴q=–w
Given that the heat is absorbed.
∴q=1000cal
⇒w=−q=−1000cal
Now,
Work done in a reversible isothermal expansion is given by-
w=−nRTln(
V
i
V
f
)
Given:-
T=0℃=273K
n=1 mol
∴1000=−nRTln(
V
i
V
f
)
⇒1000=−1×2.303×2×273×log(
22.4
V
f
)
Explanation: