Hi, you have not provided structure of the aldehyde and alkoxide ion.
Therefore i'll show a mechanism corresponding to the proton transfer by considering a simple example.
Explanation: For an example, let's consider that proton transfer is taking place between a simple aldehyde e.g. acetaldehyde and a simple alkoxide base e.g. methoxide.
The hydrogen atom attached to the carbon atom adjacent to aldehyde group are most acidic. Hence they are removed by alkoxide preferably.
After removal of proton from aldehyde, a carbanion is generated. As it is a conjugated carbanion therefore the negative charge on carbon atom can conjugate through the carbonyl group to form an enolate which is another canonical form of the carbanion.
All the structures are shown below.
Mountain chains are formed by the action of different tectonic plates drifting
Answer:
87.9%
Explanation:
Balanced Chemical Equation:
HCl + NaOH = NaCl + H2O
We are Given:
Mass of H2O = 9.17 g
Mass of HCl = 21.1 g
Mass of NaOH = 43.6 g
First, calculate the moles of both HCl and NaOH:
Moles of HCl: 21.1 g of HCl x 1 mole of HCl/36.46 g of HCl = 0.579 moles
Moles of NaOH: 43.6 g of NaOH x 1 mole of NaOH/40.00 g of NaOH = 1.09 moles
Here you calculate the mole of H2O from the moles of both HCl and NaOH using the balanced chemical equation:
Moles of H2O from the moles of HCl: 0.579 moles of HCl x 1 mole of H2O/1 mole of HCl = 0.579 moles
Moles of H2O from the moles of NaOH: 1.09 moles of HCl x 1 mole of H2O/1 mole of NaOH = 1.09 moles
From the calculations above, we can see that the limiting reagent is HCl because it produced the lower amount of moles of H2O. Therefore, we use 0.579 moles and NOT 1.09 moles to calculate the mass of H2O:
Mass of H2O: 0.579 moles of H2O x 18.02 g of H2O/1 mole of H2O = 10.43 g
% yield of H2O = actual yield/theoretical yield x 100= 9.17 g/10.43 g x 100 = 87.9%
The answer is C, because the moon does rotate it just rotates at the perfect time for us to never side the other side of it.
Te is the answer between the two