is the solubility of the gas when it exerts a partial pressure of 92.4kPa.
<h3>What is Henry's law?</h3>
Mathematically, we can get this from Henry's law
From Henry law;
Concentration = Henry constant × partial pressure
Thus Henry constant = 
Henry constant = 

Hence,
is the solubility of the gas when it exerts a partial pressure of 92.4kPa.
Learn more about the Henry's law here:
brainly.com/question/16222358
#SPJ1
Answer:
<span>The mole concept is important in chemistry because, "</span>Atoms and molecules are very small and the mole concept allows us to count atoms and molecules by weighing macroscopic amounts of material".
Explanation:
To understand this question lets take an example of Hydrogen atom. Let suppose you need to react Hydrogen with Oxygen. You need exactly Two Hydrogen atoms and one Oxygen atom to form one water molecule.
The mass of 1 hydrogen atom is 1.76 × 10⁻²⁴ grams. How will you count the Hydrogen atoms??? How can you measure exactly for 1 Million Hydrogen Atoms???
Answer to these questions and Calculations lies in Mole. It is found that 1 Mole of Hydrogen weights exactly 1.008 gram and contains 6.022 × 10²³ atoms. Now, having this reference in hand you can calculate for any number of Hydrogen atoms.
Result:
So the Mole helps us to zoom a microscopic level to a macroscopic level. :)
Colloid
Explanation:
A lotion of this type is a typical colloid mixture.
- A colloid is a homogeneous mixtures of two phases.
- The dispersed phase and the dispersion medium.
- Water is the dispersion medium and oil is the dispersed phase.
They have the following properties:
- Liquid dispersed phase and liquid dispersion medium forms an emulsion and a lotion of this type is an example.
- The particles are larger than those found in solutions.
- The particles pass through ordinary filter paper.
- They may be cloudy or clear .
learn more:
Heterogeneous mixtures brainly.com/question/1446244
#learnwithBrainly
<u>Advantages of Nuclear Fission</u>
-
Nuclear fission provides cheapest energy . Almost 10% of electricity used in the world is obtained from the fission reaction
- It offers a low-emission energy solution since there is no carbon dioxide gas emitted during the nuclear fission reaction
- A well controlled and maintained nuclear reactor can produce energy for 36 to 40 months so works for .
- It is a reliable source of energy as energy is obtained from uranium which is available is plenty.
- It provides very concentrations of energy as it can provide large amount of energy from small amount of fuel.
- The reaction gives less annual mortality rate of any energy resource with 90 deaths per trillion kilowatt hours
<u>Disadvantages of Nuclear Fission
</u>
- It is dangerous and also explosive.
- It creates harmful and radioactive waste products.
- It is not a renewable energy resource like solar and wind energy
- It can develop long-term health issues for people exposed to then radioactive waves.
- It involves high cost in installation of the reactors.
Answer:
Specific heat of solid A is greater than specific heat of solid B.
Explanation:
In the calorimeter, as the temperature is increasing, the vibrational kinetic energy will increase and this means that additional amount of energy will be needed to increase the temperature by the same value. Therefore, we can conclude that specific heat increases as temperature increases.
Now, we are told that the final temperature of solid A's calorimeter is higher than that of B.
This means from our definition earlier, Solid A will have a higher specific heat that solid B.